chapter twenty-nine

Interference, diffraction,
polarisation of light

INTERFERENCE OF LIGHT

THE beautiful colours seen in thin films of oil in the road, or in soap
bubbles, are due to a phenomenon in light called interference. Newton
discovered that circular coloured rings were obtained when white light
illuminated a convex lens of large radius of curvature placed on a sheet
of plane glass (p. 693), which is another example of interference. As we
saw in Sound, interference can be used to measure the wavelength of
sound waves (p. 617). By a similar method the phenomenon can be used
to measure the wavelengths of different colours of light. Interference of
light has also many applications in industry.

The essential conditions, and features, of interference phenomena
have already been discussed in connection with sound waves. As there
is an exact analogy between the interference of sound and light waves we
can do no better than recapitulate here the results already obtained
on pp. 616-617:

1. Permanent interference between two sources of light can only take
place if they are coherent sources, i.e., they must have the same frequency
and be always in phase with each other or have a constant phase differ-
en;:e. (’)I‘his implies that the two sources of light must have the same
colour.

2. If the coherent monochromatic light sources are P, Q, a bright
light is observed at B if the path-difference, QB—PB, is a whole number
of wavelengths, Fig. 29.1. (This corresponds to the case of a loud sound

FIG. 29.1. Interference of light.

heard at B if P, Q were two coherent sources of sound.) A bright light is
observed at A if PA = QA, in which case the path-difference is zero.

3. If the path-difference is an odd number of half wavelengths,
darkness is observed at the point under consideration. (This corresponds
to silence at the point in the case of two coherent sound sources.)
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688 ADVANCED LEVEL PHYSICS
Young’s Experiment

From the preceding, it can be understood that two conditions are
essential to obtain an interference phenomenon. (i) Two coherent
sources of light must be produced, (ii) the coherent sources must be
very close to each other as the wavelength of light is very small, other-
wise the bright and dark pattern in front of the sources tend to be too
fine to see and no interference pattern is obtained.

One of the first demonstrations of the interference of light waves
was given by YOUNG in 1801. He placed a source, S, of monochromatic
light in front of a narrow slit C, and arranged two very narrow slits
A, B, close to each other, in front of C. Much to his delight, Young
observed bright and dark bands on either side of O on a screen T, where
O is on the perpendicular bisector of AB, Fig. 29.2.
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F1G. 29.2. Young’s experiment.

Young’s observations can be explained by considering the light from
S illuminating the two slits A, B. Since the light diverging from A has
exactly the same frequency as, and is always in phase with, the light
diverging from B, A and B act as two close coherent sources. Inter-
ference thus takes place in the shaded region, where the light beams
overlap, Fig. 29.2. As AO = OB, a bright band is obtained at O. At a
point P close to O, such that BP — AP = A/2, where A is the wavelength
of the light from S, a dark band is obtained. At a point Q such that
BQ — AQ = A, a bright band is obtained; and so on for either side
of O. Young demonstrated that the bands were due to interference by
covering A or B, when the bands disappeared.

Separation of Bands

Suppose P is the position of themth bright band, so that BP — AP =
m A, Fig. 29.3. Let OP=xp,=distance from P to O, the centre of the band
system, where MO is the perpendicular bisector of AB. If a length PN
equal to PA is described on PB, then BN = BP — AP=mA. Now in
practice AB is very small, and PM is very much larger than AB. Thus
AN meets PM practically at right angles. It then follows that

angle PMO = angle BAN = 0 say.
From triangle BAN, sin 0 = AB= 2’
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where a = AB = the distance between the slits. From triangie PMO,
PO  x,

MO D’

where D = MO = the distance from the screen to the slits. Since 8 is
very small, tan 6 = sin 6.
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FiG. 29.3. Theory of Young’s experiment (exaggerated).

Measurement of Wavelength by Young’s Interference Bands

A laboratory experiment to measure wavelength by Young’s inter-
ference bands is shown in Fig. 29.4. Light from a small filament lamp is
focused by a lens on to a narrow slit S, such as that in the collimator of a
spectrometer. Two narrow slits A, B, about a millimetre apart, are
placed a short distance in front of S, and the light coming from A, B is
viewed in a low-powered microscope or eyepiece M about two metres
away. Some coloured interference bands are then observed by M. A red
and then a blue filter, F, placed in front of the slits, produces red and then
blue bands. Observation shows that the separation of the red bands is
more than that of the blue bands. Now A = ay/D, from (ii), where y is the
separation of the bands. It follows that the wavelength of red light is
longer than that of blue light.

An approximate value of the wavelength of red or blue light can be
found by placing a Perspex rule R in front of the eyepiece and moving it
until the graduations are clearly seen, Fig. 29.4. The average distance,
¥, between the bands is then measured on R. The distance a between
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FiG. 29.4. Laboratory experiment on Young’s interference bands.

the slits can be found by magnifying the distance by a convex lens, or
by using a travelling microscope. The distance D from the slits to the
Perspex rule, where the bands are formed, is measured with a metre rule.
The wavelength A can then be calculated from A = ay/D, and is of the
order 6 X 10-5 cm. Further details of the experiment can be obtained
from Advanced Level Practical Physics by Nelkon and Ogborn (Heine-
mann).

The wavelengths of the extreme colours of the visible spectrum vary
with the observer. This may be 4 x 10-3 cm for violet and 7 x 10-5
cm for red; an “average” value for visible light is 55 X 10-5 cm,
which is a wavelength in the green.

Appearance of Young’s Interference Bands

The experiment just outlined can also be used to demonstrate the
following points:—

1. If the source slit S is moved nearer the double slits the separation
of the bands is unaffected but their intensity increases. This can be seen
from the formula y (separation) = AD/a, since D and a are constant.

2. If the distance apart a of the slits is diminished, keeping S fixed,
the separation of the bands increases. This follows from y = AD]/a.

3. If the source slit S is widened the bands gradually disappear. The
slit S is then equivalent to a large number of narrow slits, each pro-
ducing its own band system at different places. The bright and dark
bands of different systems therefore overlap, giving rise to uniform
illumination. It can be shown that, to produce interference bands
which are recognisable, the slit width of S must be less than AD’/a, where
D’ is the distance of S from the two slits A, B.

4. If one of the slits, A or B, is covered up, the bands disappear.

5. If white light is used the central band is white, and the bands either
side are coloured. Blue is the colour nearer to the central band and red
is farther away. The path difference to a point O on the perpendicular
bisector of the two slits A, B is zero for all colours, and consequently
each colour produces a bright band here. As they overlap, a white band
is formed. Farther away from O, in a direction parallel to the slits, the
shortest visible wavelengths, blue, produce a bright band first.

Fresnel’s Biprism Experiment

Fresnel used a biprism R which had a very large angle of nearly 180°,
and placed a narrow slit S, illuminated by monochromatic light, in
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FiG. 29.5. Fresnel’s biprism experiment (not to scale).

front of it so that the refracting edge was parallel to the slit, Fig. 29.5.
The light emerging after refraction from the two halves, L, Q, of the
prism can be considered to come from two sources, A, B, which are the
virtual images of the slit S in L, Q respectively. Thus A, B are coherent
sources; further, as R has a very large obtuse angle, A and B are close
together. Thus an interference pattern is
observed in the region of O where the
emergent light from the two sources over-
lap, as shown by the shaded portion of
Fig. 29.5, and bright and dark bands can
be seen through an eyepiece E at O directed
towards R, Fig. 29.6. By using cross-wires,
and moving the eyepiece by a screw
arrangement, the distance y between suc-
cessive bright bands can be measured.
Now it was shown on p. 689 that 1 =
ay|D, where a is the distance between A, B
and D is the distance of the source slit from
the eyepiece. The distance D is measured
with a metre rule. The distance a can be
found by moving a convex lens between
the fixed biprism and eyepiece until a
magnified image of the two slits A, B is
seen clearly, and the magnified distance b
between them is measured. The magnifi-
cation m is (image distance —- object
distance) for the lens, and a can be cal- i
culated from a = b/m. Knowing a, », F‘?érzei'gfgfn‘g(s‘nll’;gf&"’)“"'
D, the wavelength A can be determined. ;

If A is the large angle, nearly 180°, of the biprism, each of the small
base angles is (180° — A)/2, or 90° — A/2. The small deviation d in
radians of light from the slit Sis (n — 1) 6, where 6 is the magnitude of
the base angle in radians (p. 457), and hence the distance A, B between
the virtual images of the slit = 2¢td = 2¢ (n — 1) 6, where t is the distance
from S to the biprism.
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Interference in Thin Wedge Films

A very thin wedge of an air film can be formed by placing a thin piece
of foil or paper between two microscope slides at one end Y, with the
slides in contact at the other end X, Fig. 29.7. The wedge has then a very
small angle 6, as shown. When the air-film is illuminated by mono-
chromatic light from an extended source S, straight bright and dark
bands are observed which are parallel to the line of intersection X of
the two slides. :
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FiG. 29.7. Thin wedge film.

The light reflected down towards the wedge is partially reflected
nupwards from the lower surface O of the top slide. The remainder of the
light passes through the slide and some is reflected upward from the top
surface B of the lower slide. The two trains of waves are coherent, since
both have originated from the same centre of disturbance at O, and
they produce an interference phenomenon if brought together by the
eye or in an eyepiece. Their path difference is 2¢, where ¢ is the small
thickness of the air-film at O. At X, where the path difference is apparently
zero, we would expect a bright band. But a dark band is observed at X.
This is due to a phase change of 180°, equivalent to an extra path differ-
ence of A/2, which occurs when a wave is reflected at a denser medium.
See pp. 641, 694. The optical path difference between the two coherent
beams is thus actually 21 + A/2, and hence, if the beams are brought
together to interfere, a bright band is obtained when 2¢ + A/2 = mA, or
2t =(m — })A. Adark bandis obtained at a thickness 7 given by 2t =mA.

The bands are located at the air-wedge film, ard the eye or microscope
must be focused here to see them. The appearance of a band is the
contour of all points in the air-wedge film where the optical path differ-
ence is the same. If the wedge surfaces make perfect optical contact at
one edge, the bands are straight lines parallel to the line of intersection of
the surfaces. If the glass surfaces are uneven, and the contact at one edge
is not regular, the bands are not perfectly straight. A particular band
still shows the locus of all points in the air-wedge which have the same
optical path difference in the air-film.

In transmitted light, the appearance of the bands are complementary
to those seen by reflected light, from the law of conservation of energy.
The bright bands thus correspond in position to the dark bands seen by
reflected light, and the band where the surfaces touch is now bright
instead of dark.




INTERFERENCE, DIFFRACTION OF LIGHT 693

Thickness of Thin Foil. Expansion of Crystal

If there is a bright band at Y at the edge of the foil, Fig. 29.7, the thick-
ness b of the foil is given by 2b = (m + %) A, where m is the number of
bright bands between X and Y. If there is a dark band at Y, then 2b =
mA. Thus by counting m, the thickness b can be found. The small angle
6 of the wedge is given by b/a, where a is the distance XY, and by measur-
ing a with a travelling microscope focused on the air-film, 8 can be
found. If a liquid wedge is formed between the plates, the optical path
difference becomes 2nt, where the air thickness is ¢, n being the refractive
index of the liquid. An optical path difference of A now occurs for a
change in ¢ which is # times less than in the case of the air-wedge. The
spacing of the bright and dark bands is thus » times closer than for air,
and measurement of the relative spacing enables n to be found.

The coefficient of expansion of a crystal can be found by forming an
air-wedge of small angle between a fixed horizontal glass plate and the
upper surface of the crystal, and illuminating the wedge by mono-
chromatic light. When the crystal is heated a number of bright bands,
m say, cross the field of view in a microscope focused on the air-wedge.
The increase in length of the crystal inan upward direction is m A/2, since
a change of A represents a change in the thickness of the film is A/2,
and the coefficient of expansion can then be calculated.

Newton’s Rings

Newton discovered an example of interference which is known as
“Newton’s rings”. In this case a lens L is placed on a sheet of plane
glass, L having a lower surface of very large radius of curvature, Fig.
29.8. By means of a sheet of glass G monochromatic light from a sodium
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F1G. 29.8. Newton’s rings.

flame, for example, is reflected downwards towards L; and when the
light reflected upwards is observed through a microscope M focused on
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H, a series of bright and dark rings is seen. The circles have increasing
radius, and are concentric with the point of contact T of L with H.

Consider the air-film PA between A on the plate and P on the lower
lens surface. Some of the incident light is reflected from P to the micro-
scope, while the remainder of the light passes straight through to A,
where it is also reflected to the microscope and brought to the same focus.
The two rays of light have thus a net path difference of 21, where ¢ =
PA. The same path difference is obtained at all points round T which
are distant TA from T;and hence if 2t =m A, where m is an integer and
Ais the wavelength, we might expect a bri ght ring with centre T. Similarly,
if 2t = (m + 3) A, we might expect a dark ring.

When a ray is reflected from an
optically denser medium, however, a
phase change of 180° occurs in the
wave, which is equivalent to its
acquiring an extra path difference of
A2 (see also p. 692). The truth of this
statement can be seen by the presence
of the dark spot at the centre, T, of
the rings. At this point there is no
geometrical path difference between
the rays reflected from the lower sur-

., face of the lens and H, so that they

should be in phase when they are

E,‘fmeﬁg %y I‘fﬁ;ﬁ‘f’é‘,‘fm';“g.ff brought to a focus and should form a

yellow light between a convex bright spot. The dark spot means,

lens and a flat glass plate. therefore, that one of the rays suffers

a phase change of 180°. Taking the phase change into account, it follows
that

2t = mA for a dark ring . a ; (1)
and 2t = (m + 3)A for a bright ring . g )

where m is an integer. Young verified the phase change by placing oil
of sassafras between a crown and a flint glass lens. This liquid had a
refractive index greater than that of crown glass and less than that of
flint glass, so that light was reflected at an optically denser medium at
each lens. A bright spot was then observed in the middle of the Newton’s
rings, showing that no net phase change had.now occurred.

The grinding of a lens surface can be tested by observing the appear-
ance of the Newton’s rings formed between it and a flat glass plate
when monochromatic light is used. If the rings are not perfectly circular,
the grinding is imperfect. See Fig. 29.9.

Measurement of Wavelength by Newton’s Rings

The radius r of a ring can be expressed in terms of the thickness, ¢, of
the corresponding layer of air by simple geometry. Suppose TO is pro-
duced to D to meet the completed circular section of the lower surface
PQ of the lens, PO being perpendicular to the diameter TD through T,
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Fig. 29.10. Then, from the well-known theorem concerning the segments
of chords in a circle, TO. OD = QO. OP. But AT = r = PO, Q0 =
OP=r,AP =t =TO,and OD = 2¢ — OT = 2a — ¢.

tQa—t)=rXr=r?
2at — t2=r?

But #2 is very small compared with 2at, as a is large.

2t = P . . . . . @)
But 2t = (m + 3}) A for a bright ring.

r2
o i (m+4+Har . . . . . 3)

The first bright ring obviously corresponds

to the case of m = 0 in equation (3); the Vi
second bright ring corresponds to the case of m /

= 1. Thus the radius of the 15th bright ring [

is given from (3) by r2/a = 14}A, from which 1

A = 2r*29a. Knowing r and a, therefore, the \
wavelength A can be calculated. Experiment \
shows that the rings become narrower when
blue or violet light is used in place of red light,
which proves, from equation (3), that the
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wavelength of violet light is shorter than the Th FiG. f29-£19- .
wavelength of red light. Similarly it can be Newton's rings.

proved that the wavelength of yellow light is
shorter than that of red light and longer than the wavelength of violet
light.

The radius r of a particular ring can be found by using a travelling
microscope to measure its diameter, The radius of curvature, @, of the
lower surface of the lens can be measured accurately by using light of
known wavelength X’, such as the green in a mercury-vapour lamp or
the yellow of a sodium flame; since a = r2/(m + }) A’ from (3), the
radius of curvature a can be calculated from a knowledge of r, m, X’

Visibility of Newton’s Rings

When white light is used in Newton’s rings experiment the rings are
coloured, generally with violet at the inner and red at the outer edge.
This can be seen from the formula r* = (m + }) Aa, (3),as r* « A.
Newton gave the following list of colours from the centre outwards:

First order: Black, blue, white, yellow, orange, red. Second order:
Violet, blue, green, yellow, orange, red. Third order: Purple, blue, green,
yellow, orange, red. Fourth order: Green, red. Fifth order: Greenish-
blue, red. Sixth order: Green-blue, pale-red. Seventh order: Greenish-
blue, reddish-white. Beyond the seventh order the colours overlap and
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hence white light is obtained. The list is known generally as “Newton’s
scale of colours”. Newton left a detailed description of the colours
obtained with different thicknesses of air.

When Newton’s rings are formed by sodium light, close examination
shows that the clarity, or visibility, of the rings gradually diminishes as
one moves outwards from the central spot, after which the visibility
improves again. The variation in clarity is due to the fact that sodium
light is not monochromatic but consists of two wavelengths, A, A,
close to one another. These are (i) A, = 5890 X 102 cm (Dy), (i) A, =
5896 x 10-8 cm (D,). Each wavelength produces its own pattern of -
rings, and the ring patterns gradually separate as m, the number of the
ring, increases. When mA, = (m 4+ %) A,, the bright rings of one wave-
length fall in the dark spaces of the other and the visibility is 2 minimum.
In this case

5896m= 5890 (m + 3).
m= —ﬁ(—) = 490 (approx.)

At a further number of ring m;, when m A, = (m; + 1)X,, the bright
(and dark) rings of the two ring patterns coincide again, and the clarity,
or visibility, of the interference pattern is restored. In this case

5896m, = 5890 (m; + 1),
from which m; = 980 (approx.). Thus at about the 500th ring there is
a minimum visibility, and at about the 1000th ring the visibility is a
maximum.

It may be noted here that the bands in films of varying thickness,
such as Newton’s rings and the air-wedge bands, p. 692, appear to be
formed in the film itself, and the eye must be focused on the film to
see them. We say that the bands are “localised” at the film. With a
thin film of uniform thickness, however, bands are formed by parallel
rays which enter the eye, and these bands are therefore localised at
infinity.

“Blooming’’ of Lenses

Whenever lenses are used, a small percentage of the incident light-
is reflected from each surface. In compound lens systems, as in tele-
scopes and microscopes, this produces a background of unfocused
light, which results in a reduction
in the clarity of the final image.
There is also a reduction in the
intensity of the image, since less
Air light is transmitted through the

lenses.
The amount of reflected light
Magnesium can be considerably reduced by
fluoride evaporating a thin coating of
a fluoride salt such as magnesium
fluoride on to the surfaces, Fig.
FiG. 29.11. Blooming of lens. 29.11.Someofthelight, of average

-

Glass
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wavelength 4, is then reflected from the air-fluoride surface and the
remainder penetrates the coating and is partially reflected from the
fluoride-glass surface. Destructive interference occurs between the
two reflected beams when there is a phase difference of 180°, or a path
difference of A/2, as the refractive index of the fluoride is less than that of
glass, Thus if ¢ is the required thickness of the coating and m’ its retractive
index, 2n't = A/2. Hence t = A/4n" = 6 X 1075/(4 X 1-38), assuming 4 is
6 X 1005cmand n’ is 1-38; thus t = 1-1 x 1075 ¢m. _

For best results n’ should have a value equal to about V'n, where n
is the refractive index of the glass lens. The intensities of the two reflected
beams are then equal, and hence complete interference occurs between
them. No light is then reflected back from the lens. In practice, complete
interference is not possible simultaneously for every wavelength of
white light, and an average wavelength for A, such as green-yellow, is
chosen. “Bloomed” lenses effect a marked improvement in the clarity
of the final image in optical instruments.

Lloyd’s Mirror

In 1834 LroYD obtained interference bands on a screen by using a
plane mirror M, and illuminating it with light nearly at grazing incidence,

Screen

F1G. 29.12. Lloyd’s mirror experiment.

coming from a slit O parallel to the mirror, Fig. 29.12. A point such as
A on the screen is illuminated (i) by a ray OA and (ii) by a ray OM
reflected along MA, which appears to come from the virtual image I
of O in the mirror. Since O and I are close coherent sources interference
bands are obtained on the screen.
Experiment showed that the band at N, which corresponds to the
point of intersection of the mirror and the screen, was dark, since
ON = IN, this band might have been expected, before the experiment
~was carried out, to be bright. Lloyd concluded that a phase change of
180°, equivalent to half a wavelength, occurred by reflection at the
mirror surface, which is a denser surface than air (see p. 692).

Interference in Thin Films

The colours observed in a soap-bubble or a thin film of oil in the
road are due to an interference phenomenon; they are also observed in
thin transparent films of glass.

Consider a ray AO of monochromatic light incident on a thin parallel-
sided film of thickness ¢ and refractive index n. Fig. 29.13 is exaggerated
for clarity. Some of the light is reflected at O along ON, while the
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remainder is refracted into the film, where reflection occurs at B. The
ray BC then emerges into the air along CM, which is parallel to ON.
The incident ray AO thus divides at O into two beams of different
amplitude which are coherent, and if ON, CM are combined by a lens,
or by the eye-lens, a bright or dark band is observed according to the
path difference of the rays.

The time taken for light to
travel a distance y in a medium
of refractive index n is y/v,
where v is the velocity of light
in the medium. In this time, a
distance ¢ X y/v is travelled in
air, where ¢ is the velocity in

,7/ air. But n = c¢/v. Hence the
" ¢ optical path of a length yin a
/1t medium of refractive index »n is

g / . The optical path difference

between the two rays ON and

. OBCM is thus # (OB + BC) —
‘e OD, where CD is perpendicular
N to ON, Fig. 29.13. If CE is the
x¥ perpendicular from C to OB,

then OD/OE = sin ifsin r = n,
so that nOE = OD.

optical path difference = n (EB + BC) = n (EB + BX) = n. EX.

= 2ntcosr,

where r is the angle of refraction in the film. With a phase change of
180° by reflection at a denser medium, a bright band is therefore obtained
when2ntcosr + A2 =m),
or 2ntcosr=(m—3) A. . . . @)
For a dark band, 2ntcosr=mA . . . . . (ii)

F1G. 29.13. Interference in thin films.

Colours in Thin Films

The colours in thin films of oil or glass are due to interference from
an extended source such as the sky or a cloud. Fig. 29.14 illustrates inter-
ference between rays from points O,, O, respectively on the extended
source. Each ray is reflected and refracted at A,, A, on the film, and
enter the eye at E,. Although O,, O, are non-coherent, the eye will see
the same colour of a particular wavelength A if 2 ntcos r = (m — 1) A.
The separation of the two rays from A, or from A, must be less than the
diameter of the eye-pupil for interference to occur, and this is the case
only for thin films. The angle of refraction r is determined by the angle
of incidence, or reflection, at the film. The particular colour seen thus
depends on the position of the eye. At E,, for example, a different colour
will be seen from another point O, on the extended source. The variation
of 0 and hence r is small when the eye observes a particular area of the
film, and hence a band of a particular colour, such as A; A,, is the con-
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tour of paths of equal inclination to the film. The bands are localised at
infinity, since the rays reaching E; or E, are parallel.

If a thin wedge-shaped film is illuminated by an extended source, as
shown on p. 692 or in Newton’s rings, the bands seen are contours of
equal thickness of the film.

- _w_\Oz

Extended

Fi1G. 29.14. Colours in thin films.

Vertical Soap Filni Colours

An interesting experiment on thin films, due to C. V. Boys, can be
performed by illuminating a vertical soap film with monochromatic
light. At first the film appears uniformly coloured. As the soap drains
to the bottom, however, a wedge-shaped film of liquid forms in the
ring, the top of the film being thinner than the bottom. The thickness
of the wedge is constant in a horizontal direction, and thus horizontal
bright and dark bands are observed across the film. When the upper
part of the film becomes extremely thin a black band is observed at the
top (compare the dark central spot in Newton’s rings experiment), and
the film breaks shortly afterwards.

With white light, a succession of broad coloured bands is first
observed in the soap film. Each band contains colours of the spectrum,
red to violet. The bands widen as the film drains, and just before it
breaks a black band is obtained at the top.

For normal incidence of white light, a particular wavelength A is
seen where the optical path difference due to the film = (m — )2 and
m is an integer. Thus a red colour of wavelength 7-0 X 10~ cm is seen
where the optical path difference is 3-5 x 10-5 cm, corresponding to
m = 1. No other colour is seen at this part of the thin film. Suppose,
however, that another part of the film is much thicker and the optical
path difference here is 21 X 3-5 X 105 cm. Then a red colour of wave-
length 70 X 10-% cm, m = 11, an orange colour of wavelength about
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64 X 10-% cm, m = 12, a yellow wavelength about 59 x 10-% cm,
m = 13, and other colours of shorter wavelengths corresponding to
higher integral values of m, are seen at the same part of the film. These
_ colours all overlap and produce a white colour. If the film is thicker
still, it can be seen that numerous wavelengths throughout the visible
spectrum are obtained and the film then appears uniformly white.

Monochromatic light and Thin Parallel Films

If a thin parallel film is illuminated by a beam of monochromatic
light, obtained by using an extended or broad source such as a bunsen
burner sodium flame, a number of circular bright and dark curves can
be seen. Fig. 29.15 illustrated how interference is obtained from the light
originating from points a, b which is refracted at an angle « into the
film. This is similar to Fig. 29.14 if B represents an eye-lens.

Fo pA
Source ;

S’Rb
a

A

Fi1G. 29.15. Interference with extended source.

The emergent rays are combined by the eye-lens or a glass lens B, and a
dark band is formed at A if 2n¢ cos a = mA, with the usual notation.
If the light is incident on the film in every plane a circular band is obtained,
whose centre is F, the focus of B. It is a band of ‘equal inclination’.
When a parallel beam of monochromatic light is incident on the thin
film, the angle of refraction r in the film and the thickness ¢ are constant.
The film thus appears uniformly bright at all points if the condition
2nt cos r = (m + }) Aisobeyed, andis uniformly darkif 2nt cos r = mA.
If the film is illuminated by a parallel beam of white light, the trans-
mitted light appears to have dark bands across it when viewed through
a spectroscope. The latter separates the colours, and a dark band is
obtained where the condition 2nt cos r = (m -+ 3)A is satisfied for the
particular wavelength, since we are now concerned with transmitted light.

EXAMPLE

What are Newton’s rings and under what conditions can they be observed ?
Explain how they can be used to test the accuracy of grinding of the face of a
lens. The face of a lens has a radius of curvature of 50 cm. It is placed in contact
with a flat plate and Newton’s rings are observed normally with reflected light
of wavelength 5 X 10-8 cm. Calculate the radii of the fifth and tenth bright
rings. (C.)

First parts. See text.
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Second part. With the usual notation, for a bright ring we have
A=m+HA, . . . .0
where ¢ is the corresponding thickness of the layer of air.

2
But, from geometry, 2t = % . . . . . (i)

where r is the radius of the ring and a is the radius of curvature of the lens
face (p. 695).

rg
g =m+ HA
rr=m-+Hrxa . .. . . (i)

The first ring corresponds to m = 0 from equation (iii). Hence the fifth ring
corresponds to m = 4, and its radius r is thus given by

rr=4+1 X 5% 10-5 X 50
J9x5xlo-6x50
r= 3

The tenth ring corresponds to m = 9 in equation (iii), and its radius is thus
given by

= 0-106 cm.

r2=9% X 5% 10-5 X 50
r=0154cm.

DIFFRACTION OF LIGHT

In 1665 GRIMALDI observed that the shadow of a very thin wire in a
beam of light was much broader than he expected. The experiment was

B

repeated by Newton, but the true significance was only recognised more
than a century later, after Huygens’ wave theory of light had been
light could bend round corners in certain circumstances..

We have seen how interference patterns, for example, bright and dark
of two sources of light close to each
other. These sources must be co-
the same amplitude and frequency, ”m
and always be in phase with each A
same wavefront, for example the two
points A, B, on a plane wavefront
Fig.29.16. A and B can be considered  Brightness
as secondary. sources of light, an curve
aspect introduced by Huygens in AN
his wave theory of light (p. 676); and

M N

as they are on the same wavefront,

resurrected. The experiment was one of a number which showed that
bands, can be obtained with the aid
herent sources, i.e., they must have II
other. Consider two points on the :

{

|
arriving at a narrow slit in a screen, :

i

i

[}

]
A and B have identical amplitudes FiG. 29.16. Diffraction of light.



-

702 ADVANCED LEVEL PHYSICS

and frequencies and are in phase with
each other. Consequently A, B, are co-
herent sources, and we can expect to find
an interference pattern on a screen in
front of the slit, provided the latter is
. small compared with the wavelength of

- SR light. For a short distance beyond the

FiG. 29.17. Diffraction rings edges M, N, of the projection of AB, i.c.,

in the shadow of a small jp the geometrical shadow, observation

circular disc. The bright spot

is at the centre of the geo- Shows that there are some alternate

metrical shadow. bright and dark bands. See Fig. 29.20.

Thus light can travel round corners. The phenomenon is called
diffraction, and it has enabled scientists to measure accurately the
wavelength of light.

If a source of white light is observed through the eyelashes, a series
of coloured images can be seen. These images are due to interference
between sources on the same wavefront, and the phenomenon is thus an
example of diffraction. Another example of diffraction was unwittingly
deduced by PoissoN at a time when the wave theory was new. Poisson
considered mathematically the combined effect of the wavefronts round
a circular disc illuminated by a distant small source of light, and he came
to the conclusion that the light should be visible beyond the disc in
the middle of the geometrical shadow. Poisson thought this was im-
possible; but experiment confirmed his deduction, and he became a
supporter of the wave theory of light. See Fig. 29.17.

Diffraction at Single Slit

We now consider diffraction at a single slit in more detail. Suppose
parallel light is incident on a narrow rectangular slit AB, Fig. 29.18.

FiG. 29.18. Diffraction at single slit.

Each point on the same wavefront between A, B acts as a secondary
centre of disturbance, and sends out wavelets beyond the slit. All the
secondary centres are coherent, and their combined effect at any point
such as P or Q can be found by summing the individual waves there,
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from the Principle of Superposition. The mathematical treatment is
beyond the scope of this book. The general effect, however, can be derived
by considering the two halves AC, CB of the wavefront AB. At a point
P equidistant from A and B, corresponding secondary centres in AC,
CB respectively, such as X and Y, are also equidistant from P. Con-
sequently wavelets arrive in phase at P. When AB is of the order of a
few wavelengths of light the resultant amplitude at P due to the whole
wavefront AB is therefore large, and thus a bright band is obtained at P.
As we move from P parallel to AB, points are obtained where the
secondary wavelets from the two halves of the wavefront become more
and more out of phase on arrival and the brightness thus diminishes.
Consider a point Q, where AQ is half a wavelength longer than CQ.
A disturbance from A, and one from C, then arrive at Q 180° out of
phase. This is also practically the case for all corresponding points such
as X, Y on the two halves of the wavefront. In particular, CQ and BQ
differ practically by A/2, where C is the extreme point in the upper half
of the wavefront and B is the extreme point on the lower half. Thus Q
corresponds to the edge or minimum intensity of the central band
round P, Fig. 29.19. As we move farther away from Q parallel to AB, the
intensity rises again to a much smaller

Intensity maximum at R, where AR — BR =

* 34/2,Fig. 29.18. To explain this, one can

imagine the wavefront AB-in Fig. 29.18

divided into three equal parts. Two

parts annul each other’s displacements

at R as just explained, leaving one-third

of the wavefront, which produces a

much less bright band at R than at P.
Calculation shows that the maximum

a intensity of the band at R is less than
"‘6"‘* 5 per cent of that of the central band
at P. Other subsidiary maxima and

Fic. 29.19. '.“tﬁ“ﬁ'i}.y variation - minima diffraction bands are obtained
oo if the slit is very narrow. See Fig. 29.20.

I
|
|
|
I
|
I
I
|
1
P

Q,

FiG. 29.20. Diffraction bands formed by a single small rectangular aperture.

Width of Central Band. Rectilinear Propagation

The angular width of the central bright band is 268, where @ is the
angular width between the maximum intensity direction P and the mini-
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mum at Q, Fig. 29.19. From Fig. 29.18, it can be seen that the line CQ
to the edge of the central band makes an angle 8 with the direction CP
of the incident light given by

AF _AD+CE A2+ A2 A
AB  AB a T a’
where a = AB. When the slit is widened and a becomes large compared
with A, then sin 6 is very small and hence 8 is very small. In this case
the directions of the minimum and maximum intensities of the central
band are very close to each other, and practically the whole of the light
is confined to a direction immediately in front of the incident direction,
that is, no spreading occurs. This explains the rectilinear propagation of
light. When the slit width @ is very small and equal to 2, for example,
then sin 6 = Ma = 1/2, or § = 30°. The light waves now spread round
through 30° on either side of the slit.

These results are true for any wave phenomenon. In the case of an
electromagnetic wave of 3 cm wavelength, a slit of these dimensions
produces sideways spreading. Sound waves of a particular frequency
256 Hz have a wavelength of about 1-3 m. Consequently, sound waves
spread round corners or apertures such as a doorway, which have
comparable dimensions to their wavelengths.

sin 0 =

Diffraction in Telescope Objective

When a parallel beam of light from a distant object such as a star S,
enters a telescope objective L, the lens collects light through a circular
opening and forms a diffraction pattern of the star round its principal
focus, F. This is illustrated in the exaggerated diagram of Fig. 29.21.

6 s, JL\ e
S, Al X
0 S, o+
L /6 F
S, of /c
? S, g " R
S1

FiG. 29.21. Diffraction in telescope objective.

-Consider an incident plane wavefront AB from the star S,, and suppose
for a moment that the aperture is rectangular. The diffracted rays such
as AG, BH normal to the wavefront are incident on the lens in a direction
parallel to the principal axis LF. The optical paths AGF, BHF are equal.
This is true for all other diffracted rays from points between A, B which
are parallel to LF, since the optical paths to an image produced by a lens
are equal. The central part F of the star pattern is therefore bright.

Now consider those diffracted rays from all points between AB which
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enter the lens at an angle 6 to the principal axis. This corresponds to a
diffracted plane wavefront BY at an angle 6 to AB. As described
previously on p. 703, the wavefront AB can be divided into two halves,
AO, OB. The rays from A and O in the two halves produce destructive
interference if AX = }/2, and likewise the extreme points O, B in the
two halves produce destructive interference as OC = A[2. Other corres-
ponding points on the two halves also produce destructive interference.
When the rays are collected and brought to a focus at R, darkness is
thus obtained, that is, R is the edge of the central maximum of the star
S;. As explained on p. 704, other subsidiary maxima may be formed
round F. ,

The angle 6 corresponding to the edge R is given by
A2+ A2 A

D D’

where D is the diameter of the lens aperture. This is the case where the
opening can be divided into a number of rectangular slits. For a circular
opening such as a lens (or the concave mirror of the Palomar telescope),
the formula becomes sin 8 = 1-22/D, and as 6 is small, we may write
6 = 1-22A/D. ,

sin 0 =

Resolving Power

Suppose now that another distant star S, is at an angular distance 6
from S;, Fig. 29.21. The maximum intensity of the central pattern of S,
then falls on the minimum or edge of the central pattern of the star S,,
corresponding to R in Fig. 29.22 (i). Experience shows that the two stars

Resultant
Resultant \ Resultant
/
S,
A A TAVIRVA\AVR VA
Just resolved Unresolved Completely resolved
(i) (i) (iii)

FI1G. 29.22. Resolving power.

can then just be distinguished or resolved. Lord Rayleigh stated a
criterion for the resolution of two objects, which is generally accepted:
Two objects are just resolved when the maximum intensity of the central
pattern of one object falls on the first minimum or dark edge of the other.
Fig. 29.22 (i) shows the two stars just resolved. The resultant intensity
in the middle dips to about 0-8 of the maximum, and the eye is appar-
ently sensitive to the change here. Fig. 29.22 (ii) shows two stars S;, S,
unresolved, and Fig. 29.22 (iii) the same stars completely resolved.
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The angular distance 8 between two distant stars just resolved is thus
given by sin § = 6 = 1-22 A/ D, where D is the diameter of the objective.
This is an expression for the limit of resolution, or resolving power, of a
telescope. The limit of resolution or resolving power increases when 6
is smaller, as two stars closer together can then be resolved. Con-
sequently telescope objectives of large diameter D give high resolving
power. The Yerkes Observatory has a large telescope objective of about
100 cm. The angular distance 6 between two stars which can just be
resolved is thus given by
0 1224 122 X 6 x 105

- D 100
assuming 6 X 10-% cm for the wavelength of light. The Mount Palomar
telescope has a parabolic mirror objective of aperture 5 metres, or 500
cm. The resolving power is thus five times as great as the Yerkes Obser-
vatory telescope. A large aperture D has also the advantage of collecting
more light (p. 542). The Jodrell Bank radio telescope has a circular
bowl of about 75 m, and for radio waves of 20 cm wavelength the
resolving power, § = 1:22A/D = 1-22 x 20/7500 radians = 3 x 10-3
radians (approx.).

= 7-3 X 10-7 radians,

Magnifying Power of Telescope and Resolving Power

If the width of the emergent beam from a telescope is greater than
the diameter of the eye-pupil, rays from the outer edge of the objective
do not enter the eye and hence the full diameter D of the objective is not
used. If the width of the emergent beam is less than the diameter of the
eye-pupil, the eye itself, which has a constant aperture, may not be able
to resolve the distant objects. Theoretically, the angular resolving power
of the eye is 1:22 Afa, where a is the diameter of the eye-pupil, but in
practice an angle of 1 minute is resolved by the eye, which is more than
the theoretical value.

Now the angular magnification, or magnifying power, of a telescope
is the ratio a’/a, where a’ is the angle subtended at the eye by the final
image and a is the angle subtended at the objective (p. 533). To make
the fullest use of the diameter D of the objective, the magnifying power
should therefore be increased to the angular ratio given by

resolving power of eye ~ 7/(180 X 60)
resolving power of objective 122 X 6 X 10-5/D 4 D (approx.)
In this case the telescope is said to be in “normal adjustment”. Any
further increase in magnifying power will make the distant objects

appear larger, but there is no increase in definition or resolving power.

Brightness of Images in Telescope

In a telescope, the eye is placed at the exit-pupil or eye-ring, the circle
through which the emergent beam passes (p. 532). The entrance pupil of
the telescope is the aperture or diameter of the objective. If the area of
the latter is 4, then the smaller area of the exit-pupil is 4/M?, where M
is the angular magnification of the telescope in normal adjustment (see
p. 535).
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Consider a telescope used to observe (a) a small but finite area; or
extended object, and (b) a point source, such as a star. Suppose that in
each case the magnifying power is adjusted to make the exit pupil of the
telescope equal to the eye pupil. In each case the luminous flux collected
with the telescope is equal to the flux collected by an unaided eye multi-
plied by the ratio: area of objective/area of eye-pupil, which is M2

Geometrically, the telescope magnifies the finite object area by a factor
Mz, but the image of the point object is still a point. Hence the area of
the retinal image of the finite object is magnified by a factor M2 when
the telescope is used. On the other hand, since the eye-pupil is filled with
light by the telescope, the retinal image of the point object with the
telescope is the same as that without the telescope—it is the diffraction
image for a point source. It will be seen that, for the finite object, the
larger flux is spread over a larger image area, so that (apart from absorp-
tion losses in the telescope) the retinal illumination is unchanged. For
the point object, however, the increased flux is spread over the same
retinal area so that the brightness of the image is increased. On this
account stars appear very much brighter when viewed by a telescope,
whereas the brightness of the background, which acts as an extended
object, remains about the same. Stars too faint to be seen with the
naked eye become visible using a powerful telescope, and. the number
of stars seen thus increases considerably using a telescope.

Increasing Number of Slits. Diffraction Grating

On p. 703 we saw that the image of a single narrow rectangular slit is
a bright central or principal maximum diffraction band, together with
subsidiary maxima diffraction bands which are much less. bright. Sup-
pose that parallel light is incident on two more parallel close slits, and
the light passing through the slits is received by a telescope focused at
infinity. Since each slit produces a similar diffraction effect in the same
direction, the observed diffraction pattern will have an intensity varia-
tion identical to that of a single slit. This time, however, the pattern is
crossed by a number of interference bands, which are due to interference
between slits (see Young’s experiment, p. 688). The envelope of the
intensity variation of the interference bands follow the diffraction pat-
tern variation due to a single slit. In general, if 7, is the intensity at a
point due to interference and ; that due to diffraction, then the resultant
intensity 7 is given by I = I3 X I,. Hence if I; = 0 at any point, then
I = 0 irrespective of the value of I,.

As more parallel equidistant slits are introduced, the intensity and
sharpness of the principal maxima increase and those of the subsidiary
maxima decrease. The effect is illustrated roughly in Fig. 29.23. With
several thousand lines per centimetre, only a few sharp principal
maxima are seen in directions discussed shortly. Their angular separa-
tion depends only on the distance between successive slits. The slit
width affects the intensity of the higher order principal maxima; the
narrower the slit, the greater is the diffraction of light into the higher
orders.

A diffraction grating is a large number of close parallel equidistant
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slits, ruled on glass or metal; it provides a very valuable means of
studying spectra. If the width of a slit or clear space is 2 and the thickness
of a ruled opaque line is b, the spacing d of the slits is (¢ 4 b). Thus with
a grating of 6000 lines per centimetre, the spacing d = 1/6000 centi-
metre = 17 X 10-3 cm, or a few wavelengths of visible light.

Single slit

I diffraction
pattern

I Princ'ipal Envelope
maxima

2 Slits

Principal  gybsidiary
I maxima maxima
3 Slits

- o 7 Slits
P\,
// Il “ \\\
. S ,

FiG. 29.23. Principal maxima with increasing slits.

Principal Maxima of Grating

The angular positions of the principal maxima produced by a diffrac-
tion grating can easily be found. Suppose X, Y are corresponding
pointsin consecutive slits, where XY = d, and the grating is illuminated
normally by monochromatic light of wavelength A, Fig. 29.24. In a
direction 6, the diffracted rays XL, YM have a path difference XA of
d sin 0. The diffracted rays from all other corresponding points in the
two slits have a path difference of d sin 6 in the same direction. Other
pairs of slits throughout the grating can be treated in the same way.
Hence bright or principal maxima are obtained when

dsin 0 = mA, . . @)

where m is an integer, if all the diffracted parallel rays are collected
by a telescope focused at infinity. The images corresponding to
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FiG. 29.24. Diffraction grating.

m=20,1,2,...are said to be respectively of the zero, first, second . . .
orders respectively. The zero order image is the image where the path
difference of diffracted rays is zero, and corresponds to that seen directly
opposite the incident beam on the grating. It should again be noted
that all points in the slits are secondary centres on the same wavefront
and therefore coherent sources.

Diffraction Images

The first order diffraction image is obtained when m = 1. Thus

dsin 0 = A,
. 0_)\
or sin 8 = .

If the grating has 6000 lines per centimetre (6000 cm~1), the spac-

ing of the slits, d, is a)%ﬁ cm. Suppose yellow light, of wavelength

A = 5890 x 108 cm, is used to illuminate the grating. Then

sin 8 = 3: 5890 x 10-8 x 6000 = 0-3534
6 = 20-7°
The second order diffraction image is obtained when m = 2. In this
casedsin 8 = 2A.

sin 8 .____2;: 2 X 5890 x 10-8 x 6000 = 0-7068

S 0=450°

If m = 3, sin @ = 3A/d = 1-060. Since the sine of an angle cannot be
greater than 1, it is impossible to obtain a third order image with this
diffraction grating.

With a grating of 12000 lines per cm the diffraction images of sodium
light would be given by sin 6 = mA/d = m X 5890 x 108 x 12000
= 07068 m. Thus only m = 1is possible here. As all the diffracted light
is now concentrated in one image, instead of being distributed over
several images, the first order image is very bright, which is an advantage.
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Diffraction with Oblique Incidence

When a diffraction grating is illuminated by a monochromatic parallel
beam PX, QY at an angle of incidence 7, each point in the clear spaces acts as
a secondary disturbance and diffracted beams emerge from the grating,
Fig. 29.25. For a diffracted beam such as AB, making an angle of diffraction
0 on the same side of the normal as PX or QY, the path difference between
two typical rays PXA, QYB is d (sin i 5 sin §). For a diffracted beam such
as CD on the other side of the normal, the path difference between typical

P

Fic. 29.25. Diffraction with oblique incidence.

rays PXC, QYD is d (sin i — sinf). Thus, generally, a bright diffraction image
is seen when d (sin 7 - sin 0) = m A, where m is an integer.

The zero order or central image is obtained in a direction opposite to the
incident beam PX, QY. The first order diffraction image is obtained at angles
8 on either side of this direction given respectively by d (sin i -+ sin ) = A
and d (sin i — sin 6) = A. Diffraction images of higher order are obtained
from similar formulae.

Reflection gratings can be used when light of particular wavelengths are
absorbed by materials used in making transmission gratings. In this case the
light is diffracted back into the incident medium at the clear spaces, and the
diffraction images of various orders are given by d (sin i 4 sin 6) = mA.

Measurement of Wavelength

The wavelength of monochromatic light can be measured by a
diffraction grating in conjunction with a spectrometer. The collimator
C and telescope T of the instrument are first adjusted for parallel light
(p. 445), and the grating P is then placed on the table so that its plane is
perpendicular to two screws, Q, R, Fig. 29.26 (i). To level the table so that
the plane of P is parallel to the axis of rotation of the telescope, the latter
is first placed in the position T, directly opposite the illuminated slit
of the collimator, and then rotated exactly through 90° to a position T,.
The table is now turned until the slit is seen in T, by reflection at P, and
one of the screws Q, R turned until the slit image is in the middle of the
field of view. The plane of P is now parallel to the axis of rotation of the
telescope. The table is then turned through 45° so that the plane of the
grating is exactly perpendicular to the light from C, and the telescope
is turned to a position T, to receive the first diffraction image,
Fig. 29.26 (ii). If the lines of the grating are not parallel to the axis of
rotation of the telescope, the image will not be in the middle of the field
of view. The third screw is then adjusted until the image is central.



o (ii)
FIG. 29.26. Measurement of wavelength by diffraction grating.

The readings of the first diffraction image are observed on both sides
of the normal. The angular difference is 26, and the wavelength is
calculated from A = d sin 8, where d is the spacing of the slits, obtained
from the number of lines per centimetre of the grating. If a second order
image is obtained for a diffraction angle 6, then A = d sin 6,/2.

Position of Image

If the grating lines are on the opposite side of the glass to the
collimator C in Fig. 29.26 (ii), the light from C passes straight through the
glass and the diffracted rays at the slits emerge into air. Suppose, how-
ever, that the grating is turned round so that the lines such as A, D face
the collimator C, Fig. 29.27 (i). The rays are now diffracted into the glass
and then refracted at B, F into the air at an angle 6 to the normal. The
optical path difference between the rays ABM, DFH from corresponding
points A D, is then

n.AB 4+ BL — n.DF = BL
since AB = DF. But BL = BF sin 6 = d'sin 6. Consequently the angular

(ii)

FiG. 29.27. Position of images with diffraction grating.

positions of the principal maxima diffraction images are given by
d sin 8 = mA. Thus the images are observed at the same diffraction
angles, no matter which side of the grating faces the collimator.
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If the first order diffraction image is viewed in the telescope, and the
grating G is turned round slightly in its own plane so that the lines are
at a small angle to the vertical, the image of the slit moves round in the
same direction, Fig. 29.27 (ii). The image then appears to move up or
down in the field of view of the telescope, and disappears as the grating
is turned round farther. The effect can be seen by viewing an electric
lamp through a diffraction grating, and turning the grating in its own
plane through 90°. The diffraction images of the lamp also rotate through
90°.

Spectra in Grating

If white light is incident normally on a diffraction grating, several
coloured spectra are observed on either side of the normal, Fig. 29.28 (i).
The first order diffraction images are given by dsin = A, and as violet
has a shorter wavelength than red, 6 is less for violet than for red.
Consequently the spectrum colours on either side of the incident white
light are violet to red. In the case of a spectrum produced by dispersion
in a glass prism, the colours range from red, the least deviated, to violet,
Fig. 29.28 (ii). Second and higher order spectra are obtained with a diffrac-
tion grating on opposite sides of the normal, whereas only one spectrum
is obtained with a glass prism. The angular spacing of the colours is also
different in the grating and the prism.

If d sin 8 =m,; A, =m, A,, where m,, m,are integers, then 2 wavelength
A in the m, order spectrum overlaps the wavelength A,in the m, order. The

Grating
7 Prism
R R
Oth:r\ v V//Other R
Spectra spectra Vv
() (i)

Fi1G. 29.28. Spectra in grating and prism.

extreme violet in the visible spectrum has a wavelength about 3-8 x 105
cm. The violet direction in the second order spectrum would thus corres-
pond tod sin § = 2X = 7-6 X 10-%cm, and this would not overlap the
extreme colour, red, in the first order spectrum, which has a wavelength
about 70 X 10-5 cm. In the second order spectrum, a wavelength A,
would be overlapped by a wavelength A;in the third order if 24, = 3A,.
If Ay = 6-9 X 10-5 cm (red), then A; = 2X,/3 = 4-6 X 10-5 cm (blue).
Thus overlapping of colours occurs in spectra of higher orders than the
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Dispersion by Grating

The dispersion of a grating, d6/d ), is a measure of the change in angular
position per unit wavelength change. Now d sin 6 = mA,

do

dcos 037\ =m
dé m .
d\ dcos8 : : ®

The dispersion thus increases with the order, m, of the image. It is also
inversely proportional to the separation d of the slits, or, for a given
grating width, directly proportional to the total number of slits on the
grating. Fora given order m, the dispersionincreases when cos  is small,
or when @ is large, which corresponds to the red wavelengths of the
spectrum for normal incidence on the grating.

Resolving Power of Grating

For the mth order principal maximum of a grating, the path difference
between diffracted rays from consecutive slits iszn A. The path difference
AB between the extreme rays of the grating is thus (N — 1) mA, where
N is the total number of lines ruled on the grating, Fig. 29.29. The mini-
mum intensity of the mth order principal maximum corresponds to a
slightly different direction AC.

Now the discussion about the dis- (N=1)mX

turbances from various points _,.E//”'/ Max
across a wide slit (p. 702) can be A — Min
applied to disturbances from \ C(N —1)ymA+A

various slits across a grating. It \
therefore follows that, for the mini- \
mum intensity, the path difference \
between disturbances from the \
first to the last slit is one wave- \ /::'/
length, A, more than that for the

maximum intensity position. The Fic.29.29. Resolving power of diffraction
path difference to the minimum gratmg.

is thus (N — 1) mA 4 A. The mth

order maximum of another wavelength X’, differing slightly from A, is
formed by extreme rays which have a path difference of (N — 1) mX’
From Rayleigh’s criterion, the two wavelengths A’ and A are just re-
solved when the maximum of X’ falls on the first minimum of A. In this

case, (N =DmX =N —1)mA+ A
WN=Dm — )=
.. X—_):'—A=(N— 1) m = Nm,

since 1 is negligible compared with V.
resolving power = Nm
Ndsin 6 Nd(sini -+ sin 6)
3 of 5 s

resolving power =
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the former being the expression for light incident normally on the
grating and the latter if the angle of incidence is i, Either expression
shows that for a given angle of incidence and diffraction, it is the total
width Nd of the grating which determines its resolving power. The number
of rulings in that width affects the dispersion in a given order but has
no effect on the resolving power in that order. Thus a grating of 5 cm
width and 6000 lines per cm has twice the resolving power of a
grating 2-5 cm wide which also has 6000 lines per cm. If a grating
is only 0-3 cm wide it has only about 2000 lines on it of the same
spacing, whereas a grating 5 cm wide would have 12000 lines.

The two sodium lines or doublet have wavelengths 5:890 x 10-% and
5-896 x 10~% cm respectively. The resolving power, R.P., required to
distinguish them is given by:

A 5890 x 10-5
RP. = %0 X

N — X 0006 x 10-5
Thus if a grating has 800 lines per cm, and the width covered by a
telescope objective is 2:5 cm the sodium. lines are clearly resolved in
the first order images. If three-quarters of the grating is covered there are
only 500 lines-left, and the lines are now no longer resolved in .the
first order. They are just resolved in the second order images.

= 1000 (approx.)

Resolving Power of Microscope

ABBE proposed a theory of image formation in a microscope which
stated basically that if the structure of the illuminated object is regular
(periodic), it acts like an illuminated diffraction grating. In this case the
structure appears uniformly bright and unrecognisable if only the
zero order image is collected by the microscope objective. If, in addition,
the first order diffraction image is. collected, the image plane in the
objective contains alternate bright and dark strips or fringes in positions
corresponding to images of the grating elements. The observer then
recognises the grating structure, that is, the grating is “resolved”. The
more orders collected by the objective, the closer does the intensity dis-
tribution across the image plane resemble that transmitted by the
object itself. The effect is analogous to the recognition of a note from a
violin in Sound. This consists of a fundamental of the same frequency,
together with overtones of higher frequency which gives the sound its
timbre or quality. If only the fundamental is received, the note will
not be recognisable as the note from the violin. The more overtones
received in addition to the fundamental, the more faithful is the repro- -
duction of the note.

. An expression for the resolving power of a microscope can now be
obtained. We require, for resolution, that a first order diffraction image .
is collected in addition to the zero order. Suppose that an object of
regular structure is illuminated at an angle of incidence i by an oblique
beam (Fig. 29.30). Then, if the first order image is just collected by the-
microscope objective,

d(sini L sina) = A,
where a is the half-angle subtended by the objective at the object O and
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d is the grating spacing of the object. The minimum value of d occurs
wheni = aand d(sini + sin a) = A.
2dsina= A

A

T 2sina
This expression for d gives the grating spacing of the finest regular
structure of the object which can just be resolved. If a medium such as
oil of refractive index » is used in the object space beneath the objective,

Q Microscope
—|

N

Nt

1st Order Z
ero_gid_e_[_ Object

Fic. 29.30. Revolving power of microscope.

the least distance d or limit of resolution (also called the “resolving
power™) is:
limit of resolution = ;————
2nsina
The use of an oil-immersion objective was suggested by Abbe. The
limit of resolution for the best optical microscopes is about2 X 10-5cm.
The eye can resolve about 0-01 cm. The largest useful magnifying power
of a microscope is one which magnifies the limit of resolution of the
objective to that of the eye, and is about 1000 with glass lenses and
visible light. Higher resolving powers may be obtained with ultra-
violet light, from A/2 n sin a. An electron microscope, which contains
electron lenses and utilises electrons in place of light, has a limit of
resolution less than 10~7 cm owing to the much shorter wavelength of
moving electrons compared with that of light (p. 1077). Much larger
useful magnifying powers, such as 100 000, are thus obtained by using
electron microscopes in place of optical microscopes.

Wavelengths of Electromagnetic Waves

In this book we have encountered rays which affect the sensation of
vision (visible rays), rays which cause heat (infra-red rays, p. 456), and
rays which cause chemical action (ultra-violet rays, p. 456). As these rays
are all due to electric and magnetic vibrations they are examples
of electromagnetic waves (see p. 719). Scientists have measured the
wavelengths of these waves by a diffraction grating method, and results
show a gradual transition in the magnitudes of the wavelength from one
type of ray to another. Thus infra-red rays have a longer wavelength
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than visible rays, which in turn have a longer wavelength than ultra-
violet rays. Radio waves are electromagnetic waves of longer wavelength .

Alem) 10° 10°  5x10°10° 10~ 100
~-Y-rays X -rays b{g{:t \ Ipeféa Radio waves —=
Visible
spectrum

F1G. 29.31. Spectrum of electromagnetic waves (not to scale).

than infra-red rays, while X-rays and y-rays are due to waves of shorter
wavelength than ultra-violet waves. The whole spectrum of electro-
magnetic waves are shown in Fig. 29.31; this gives only an approximate
value of the limits of the wavelength in the various parts of the spectrum,
because these limits are themselves vague.

EXAMPLE

What is meant in optics by (a) interference, (b) diffraction? What part do
each of these phenomena play in the production of spectra by a diffraction
grating ? A parallel beam of sodium light is incident normally on a diffraction
grating. The angle between the two first order spectra on either side of the
normal is 27° 42’. Assuming that the wavelength of ‘the light is 5893 X 10-8
cm, find the number of rulings per cm on the grating. (N.)

First part. Briefly, interference is the name given to the phenomena obtained
by the combined effect of light waves from two separate coherent sources; ..
diffraction is the name given to the phenomena due to the combined effect of
light waves from secondary sources on the same wavefront. In the diffraction
grating, production of spectra is due to the interference between secondary
sources on the same wavefront which are separated by a multiple of d, where
d is the spacing of the grating rulings (p. 707).

Second part. The first order spectrum occurs at an angle § = } X 27° 42’
= 13° 51",

But dsin 0 = A
. S A _ 5893 x 108
. Tsinf sin13°51
.". number of rulings per cm _1_ sin13°51"
d 5893 x 10-8
= 4062

POLARISATION OF LIGHT

We have shown that light is a wave-motion of some kind, i.e., that
it is a travelling vibration. For a long time after the wave-theory was
revived it was thought that the vibrations of light occurred in the same
direction as the light wave travelled, analogous to sound waves. Thus
light waves were thought to be longitudinal waves (p. 584). Observa-
tions and experiments, however, to be described shortly, showed that
the vibrations of light occur in planes perpendicular to the direction along
which the light wave travels, and thus light waves are fransverse waves.
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Polarisation of Transverse Waves

Suppose that a rope ABCD passes through two parallel slits, B, C,
and is attached to a fixed point at D, Fig. 29.32 (i). Transverse waves can
be set up along AB by holding the end A in the hand and moving it up
and down in all directions perpendicular to AB, as illustrated by the
arrows in the plane X. A wave then emerges along BC, but unlike the

X Polarised Polarised
0 * _ E kwa%/e ? —'wzve _
A B C

Polarised
wave

Fi. 29.32. Formation of plane-polarised waves.

waves along AB, which are due to transverse vibrations in every plane,
it is due only to transverse vibrations parallel to the slit at B. This
type of wave is called a plane-polarised wave. It shows a lack of symmetry
about the direction of propagation, because a slit C allows the wave to
pass through when it is parallel to B, but prevents it from passing when
C is perpendicular to B, Fig. 29.32 (i), (ii). If B is turned so that it is
perpendicular to the position shown in Fig. 29.32 (i), a polarised wave
is again obtained along BC; but the vibrations which produce it are
perpendicular to those shown between B and C in Fig. 29.32 (i).

Polarised Light

Years ago it was discovered accidentally that certain natural crystals.
affect light passing through them. Tourmaline is an example of such a
crystal, quartz and calcite or Iceland spar are others (p. 720). Suppose
two tourmaline crystals, P, Q, are placed with their axes, a, b, parallel,
Fig. 29.33 (i). If a beam of light is incident on P, the light emerging from
Q appears slightly darker. If Q is rotated slowly about the line of vision,
with its plane parallel to P, the emergent light becomes darker and -
darker, and at one stage it disappears. In the latter case the axes a, b
of the crystals are perpendicular, Fig. 29.33 (ii). When Q is rotated
further the light reappears, and becomes brightest when the axes a, b are
again parallel.

This simple experiment leads to the conclusion that light waves are
transverse waves; otherwise the light emerging from Q could never be
extinguished by simply rotating this crystal. The experiment, in fact,
is analogous to that illustrated in Fig: 29.32, where transverse waves were -
set up along a rope and plane-polarised waves were obtained by means
of aslit B. Tourmaline is a crystal which, because of its internal molecular
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structure, transmits only those vibrations of light parallel to its axis.
Consequently plane-polarised light is obtained beyond the crystal P,
and no light emerges beyond Q when its axis is perpendicular to P.
Fig. 29.33 should be compared with Fig. 29.32.

al
I b: Po'I.arri]'sed
i I Polaris I ight
(i) * Ordinary I ‘o“zr'!‘sted |
light | [ ! !
I |
] |
P Q
al
: Poll_arl_ilsed
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FiG. 29.33. Formation of plane-polarised light waves.
Vibrations in Unpolarised and Polarised Light

Fig. 29.34 (i) is an attempt to represent diagrammatically the vibra-
tions of ordinary or unpolarised light at a point A when a ray travelsin a
direction AB. X is a plane perpendicular to AB, and ordinary (un-
polarised) light may be imagined as due to vibrations which occur in

Vibrations

(i) (ii)
FIG. 29.34. (i). Vibrations occur in every plane perpendicular to AB.
(ii). Vibrations in ordinary light.

every one of the millions of planes which pass through AB and are
perpendicular to X. As represented in Fig. 29.34 (ii), the amplitudes of
the vibrations are all equal.
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Consider the vibrations in ordi-

a |~<-——
nary light when it is incident on Q’Sfm%flme
the tourmaline P in Fig. 29.33 (i).

Each vibrations can be resolved into
two components, one in a direction
parallel to the axis a. of the tourma-
line P and the other in a direction
m perpendicular to a, Fig. 29.35.
Tourmaline absorbs the light due to
the latter vibrations, known as the
ordinary rays, allowing the light due

to the former vibrations, known as

the extraordinary rays, to pass

: . F1G. 29.35. Production of plane-
through it. Thus plane-polarised polarised waves gy toumgaline.
light, due to the extraordinary rays, ..
is produced by the tourmaline. Polaroid is a crystaline material, used
in sun-glasses for example, which also has. selective absorption.

Light waves are electromagnetic waves. Theory and experiment show

that the vibrations of light are electromagnetic in origin; a varying electric

vector E is present, with a varying

magnetic vector B which has the same

E frequency and phase. E and B are

perpendicular to each other, and are

in a plane at right angles.to the ray of

= e e RY Of  Jioht  Fig 29.36. Experiments have

light  shown that the electric force in a light

wave affects a photographic plate and:

causes fluorescence, while the mag-.

B netic force, though present, plays no

part in this effect of a light wave. On

this account the vibrations of the

electric force, E, are now chosen as

the “vibrations of light”, and the planes containing the vibrations shown in
Fig. 29.35 (i), (ii) are those in which only the electric forces are present.

FiG. 29.36. Electromagnetic wave.

Polarised Light by Reflection

The production of polarised light by tourmaline is due to selective
absorption of the “ordinary” rays. In 1808 MALUS discovered that
polarised light is obtained when ordinary light is reflected by a plane
sheet of glass (p. 719). The most suitable angle of incidence is about
56°, Fig. 29.37. If the reflected light is viewed through a tourmaline
crystal which is slowly rotated about the line of vision, the light is:
practically. extinguished at one position of the crystal. This proves that .
the light reflected by the glass is plane-polarised. Malus also showed

that the light reflected by water is plane-polarised.

The production of the polarised light by the glass is explained as
follows. Each of the vibrations of the incident (ordinary) light can be
resolved into a component parallel to the glass surface and a com-
ponent perpendicular to the surface. The light due to the components
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Ordinary
light

Plane-
polarised
light

F1G. 29.37. Plane-polarised waves by reflection.

parallel to the glass is reflected, but the remainder of the light, due to the
components perpendicular to the glass, is refracted into the glass. Thus
the light reflected by the glass is plane-polarised.

Brewster’s Law. Polarisation by Pile of Plates

The particular angle of incidence i on a transparent medium when the
reflected light is almost completely plane-polarized is called the polarising
angle. BREWSTER found that, in this case, tan i = n, where » is the refrac-
tive index of the medium (Brewster’s law). Since sin i/sin r, where r is
the angle of refraction, it then follows that cos i = sin r, or i 4- r = 90°.
Thus the reflected and refracted beams are at 90° to each other.

The refracted beam contains light mainly due to vibrations perpendic-
ular to that reflected and is therefore partially plane-polarised. Since
refraction and reflection occur at both sides of a glass plate, the trans-
mitted beam contains a-fair percentage of plane-polarised light. A pile
of plates increases the percentage, and thus provides a simple method of
producing plane-polarised light. They are mounted inclined in a tube so
that the ordinary (unpolarised) light is incident at the polarising angle,
and the transmitted light it then fairly plane-polarised.

Polarisation by Double Refraction

We have already considered two methods of producing polarised light.
The first observation of polarised light, however, was made by BARTHO-
LINUS in 1669, who placed a crystal of iceland spar on some words on a
sheet of paper. To his surprise, two images were seen through the crystal.
Bartholinus therefore gave the name of double refraction to the pheno-
menon, and experiments more than a century later showed that the
crystal produced plane-polarised light when ordinary light was incident
on it. See Fig. 29.38.

Iceland spar is a crystalline form of calcite (calcium carbonate) which
cleaves in the form of a “‘rhomboid” when it is lightly tapped; this is a
solid whose opposite faces are parallelograms. When a beam of unpolar-
ised light is incident on one face of the crystal, its internal molecular struc-
ture produces two beams of polarised light, E, O, whose vibrations are
perpendicular to each other, Fig. 29.39. If the incident direction AB is
parallel to a plane known as the “principal section” of the crystal, one
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Fi1G. 29.38. DouBLE REFRACTION. A ring with a spot in the
centre, photographed through a crystal of Iceland spar. The
light forms two rings and two spots.

beam O emerges parallel to AB, while the other beam E emerges displaced
in a different direction. As the crystal is rotated about the line of vision the
beam E revolves round O. On account of this abnormal behaviour the
rays in E are called ‘“‘extraordinary” rays; thé rays in O are known as
“ordinary” rays (p. 719). Thus two images of a word on a paper, for
example, are seen when an Iceland spar crystal is placed on top of it; one
image is due to the ordinary rays, while the other is due to the extra-
ordinary rays.

With the aid of an Iceland spar crystal Malus discovered the polarisa-
tion of light by reflection (p. 719). While on a visit to Paris he gazed

FiG. 29.39. Action of Iceland spar.

through the crystal at the light of the sun reflected from the windows of
the Palace of Luxemburg, and observed that only one image was obtained
for a particular position of the crystal when it was rotated slowly. The
light reflected from the windows could not therefore be ordinary (un-
polarised) light, and Malus found it was plane-polarised.
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~ Nicol Prism
We have seen that a tourmaline crystal produces polarised light, and

that the crystal can be used to detect such light (p. 717). N1COL designed a
crystal of Iceland spar which is widely used for producing and detecting

FIG. 29.40. Action of Nicol prism.

polarised light, and it is known as a Nicol prism. A crystal whose faces
contain angles of 72° and 108° is broken into two halves along the
diagonal AB, and the halves are cemented together by a layer of Canada
balsam Fig 29. 40. The refractive index of the crystal for the ordinary
rays is 1:66, and is 1-49 for the extraordinary rays; the refractive index of
the Canada balsam is about 1-55 for both rays, since Canada balsam does
not produce polarised light. A critical angle thus exists between the crystal
and Canada balsam for the ordinary rays, but not for the extraordinary
rays. Hence total reflection of the former rays takes place at the canada
balsam if the angle of incidence is large enough, as it is with the Nicol
prism. The emergent light is then due to the extraordinary rays, and is
polarised.

The prism is used like a tourmaline crystal to detect plane-polarised
light, namely, the prism is held in front of the beam of light and is rotated.
If the beam is plane-polarised the light seen through the Nicol prism
varies in intensity, and is extinguished at one position of the prism.

Differences Between Light and Sound Waves

We are now in a position to distinguish fully between light and sound
waves. The physical difference, of course, is that light waves are due to
varying electric and magnetic forces, while sound waves are due to
vibrating layers or particles of the medium concerned. Light can travel
through a vacuum, but sound cannot travel through a vacuum. Another
very important difference is that the vibrations of the particles in sound
waves are in the same direction as that along which the sound travels,
whereas the vibrations in light waves are perpendicular to the direction
along which the light travels. Sound waves are therefore longitudinal
waves, whereas light waves are transverse waves. As we have seen, sound
waves can be reflected and refracted, and can give rise to interference
phenomena; but no polarisation phenomena can be obtained with sound
waves since they are longitudinal waves, unlike the case of light waves.
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EXERCISES 29

Interference

1. Describe how to set up apparatus to observe and make measurements
on the interference fringes produced by Young’s slits. Explain how (i) the
wavelengths of two monochromatic light sources could be compared, (ii) the
separation of the slits could be deduced using a source of known wavelength.
Establish any formula required.

State, giving reasons, what you would expect to observe (a) if a white light
source 'were substituted for a monochromatic source, (b) if the source slit
were then displaced slightly at right angles to its length in the plane parallel
to the plane of the Young’s slits. (L.)

2. Explain the formation of interference fringes by an air wedge and
describe how the necessary apparatus may be arranged to demonstrate them.

Fringes are formed when light is reflected between the flat top of a crystal
resting on a fixed base and a sloping glass plate. The lower end of the plate
rests on the crystal and the upper end on a fixed knife-edge. When the
temperature of the crystal is raised the fringe separation changes from
0-96 mm to 1-00 mm. If the length of the glass plate from knife-edge to
crystal is 5-00 cm, and the light of wavelength 6:00 X 10-5 c¢m is incident
normally on the wedge, calculate the expansion of the crystal. (L.)

3. Describe in detail how the radius of curvature of the spherical face of a
planoconvex lens may be found by observations made on Newton’s rings.

Two plane glass plates which are in contact at one edge are separated by a
piece of metal foil 12:50 cm from that edge. Interference fringes parallel to
the line of contact are observed in reflected light of wavelength 5460 A and
are found to be 1-50 mm apart. Find the thickness of the foil. (L.)

4. Describe, with the aid of a labelled diagram, how the wavelength of
monochromatic light may be found using Young’s slits. Give the theory of
the experiment.

State, and give physical reasons for the features which are common to this
method and to either the method based on Lloyd’s mirror or that based on
Fresnel’s biprism.

In an experiment using Young’s slits the distance between the centre of the
interference pattern and the tenth bright fringe on either side is 3-44 cm and
the distance between the slits and the screen is 2-00 m. If the wavelength of the
light used is 5-89 X 10-7 m determine the slit separation. (N.)

5. Explain what is meant by the term path-difference with reference to the
interference of two wave-motions.

Why is it not possible to see interference where the light beams from the
headlamps of a car overlap?

Interference fringes were produced by the Young’s slits method, the wave-
length of the light being 6 X 10-5 cm. When a film of material 3-6 X 10-3cm
thick was placed over one of the slits, the fringe pattern was displaced by a
distance equal to 30 times that between two adjacent fringes. Calculate the
refractive index of the material. To which side are the fringes displaced?

(When a layer of transparent material whose refractive index is # and
whose thickness is d is placed in the path of a beam of light, it introduces a
path difference equal to (n—1)d.) (0. & C.)

6. Show how, with the aid of Huygens’ idea of secondary wavelets the
wave theory of light will account for the laws of refraction and of reflexion at
a plane surface.
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Describe briefly Young’s two-slit experiment and explain how it confirms
the wave nature of light. (L.)

7. Describe, giving both theory and experimental detail, how you would
find the radius of curvature of one surface of a convex lens by means of
Newton’s rings. You may assume that monochromatic light of a known
wavelength is available.

Newton’s rings are formed by reflexion between an equiconvex lens of
focal length 100 cm made of glass of refractive index 1:50 and in contact with
a plane glass plate of refractive index 1:60. Find the radius of the Sth bright
ring using monochromatic light of wavelength 6000 A.

Explain the changes which occur when oil of refractive index 1-55 fills the
space between the lens and plate. (1 A = 10-8 cm.) (N.)

8. Define velocity, frequency and wavelength for any wave motion, and
deduce a relation between them. What do you understand by ‘interference
between waves’ and ‘coherent wave trains’? Explain why mtert‘erence is not
observed between the beams of two electric torches.

Deduce the relation connecting the refractive index of a material with the
velocities of light in vacuo and in the material. State clearly the assumptions
you make about wave fronts in order to do this.

Light passes through a single crystal of ruby 10-0 cm long and emerges
with a wavelength of 694 x 10-5 cm. If the critical angle of ruby for light
of this wavelength if 34° 50’, calculate the number of wavelengths inside the
crystal. (C.)

9. State the conditions necessary for the production of interference effects
by two overlapping beams of light.

Describe fully one method for the production of interference fringes using
light from a given monochromatic source. Show how with the aid of suitable
measurements the wavelength of light emitted by the source may be deter-
mined with your apparatus.

Describe how the fringes produced by your apparatus would appear if a
source of white light were employed instead of a monochromatic one.
(0.&C.)

10. Explain how Newton’s rings are formed, and describe how you would
demonstrate them experimentally. How is it possible to predict the appearance
of the centre of the ring pattern when (a) the surfaces are touching, and (b)
the surfaces are not touching?

In a Newton’s rings experiment one surface was fixed and the other
movable along the axis of the system. As the latter surface was moved the
rings appeared to contract and the centre of the pattern, initially at its
darkest, became alternately bright and dark, passing through 26 bright
phases and finishing at its darkest again. If the wavelength of the light was
5461 A, how far was the surface moved and did it approach, or recede from,
the fixed surface? Suggest one possible application of this experiment.
(0.&C.)

11. Explain the formation of Newton’s rings and describe how you would
use them to measure the radius of curvature of the convex surface of a long-
focus planoconvex lens.

The diameters of the mth and (m 4 10)th bright rings formed by such a
lens resting on a plane glass surface are respectively 0-14 cm and 0-86 cm.
When the space between lens and glass is filled with water the diameters of
the gth and (¢ + 10)th bright rings are respectively 0-23 cm and 0-77 cm.
What is the refractive index of water? (L.)
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12. What are:the conditions essential for the production of optical inter-
ference fringes? :

Explain how these conditions are satisfied in the case of (a) Youngs
fringes, and () thin film interference fringes. (N.)

13. Describe, in detail how you would arrange apparatus to observe, in
monochromatic light, interference fringes formed by light reflected from two
glass plates enclosing an air wedge. Show how the angle of the wedge could
be obtained from measurements on the fringes.

Newton’s rings are formed with light of wavelength 5-89 X 10-5 cm
between the curved surface of a planoconvex lens and a flat glass plate, in
perfect contact. Find-the radius of the 20th dark ring from the centre if the
radius of curvature of the lens surface is 100 cm, How will this ring move
and what will its radius become if the lens and the plate are slowly separated
to a distance apart of 5-00 x 10—4 cm? (L.)

14. What are the necessary conditions for interference of light to be
observable? Déscribe with the aid of a labelled diagram how optical inter-
ference may be demonstrated using Young’s slits. Indicate suitable values for
all the distances shown.

How are the colours observed in thin films explained in terms of the wave
nature of light? Why does a small oil patch on the road often show approxi-
mately circular coloured rings? (L.) ‘

Diffraction

15. Describe and give the theory of an experiment to compare the wave-
lengths of yellow light from a sodium and red light from a cadmium discharge
lamp, using a diffraction grating. Derive the required formula from first
principles.

White light is reflected normally from a soap film of refractive index 1-33
and then directed upon the slit of a spectrometer employing a diffraction
grating at normal incidence. In the first-order spectrum a dark band is
observed with minimum intensity at an angle of 18° 0’ to the normal. If the
grating has 5000 lines per cm, determine the thickness of the soap film
assuming this to be the minimum value consistent with the observations. (L.)

16. Describe the phenomena which occur when plane waves pass (a)
through a wide aperture, (b) through an aperture whose width is comparable
with the wavelength of the waves.

How does the wave theory of light account for the apparent rectilinear
propagation of light?

A diffraction grating has 6000 lines per cm. Calculate the angular separation
between wavelengths 5-896 X 10-5 cm and 5-461 X 10-5 cm respectively
after transmission through it at normal incidence, in the first-order spectrum.
(0.&C.)

" 17. Describe two experiments to show the diffraction of light.
Describe how a diffraction grating may be used to measure the wavelength
of sodium light, deriving any formulae employed. (L.)

18. What are the advantages and disadvantages of a diffraction grating as
compared with a prism for the study of spectra?

A rectangular piece of glass 2 cm X 3 cm has 18000 evenly spaced lines
ruled across its whole surface, parallel to the shorter side, to form a diffraction
grating. Parallel rays of light of wavelength 5 X 10-5 cm fall normally on the
grating. What is the highest order of spectrum in the transmitted light?
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What is the minimum diameter of a camera lens which can accept all the
light of this wavelength in this order which leaves the grating on one side of
the normal? (0. & C.) ' -

19. In an experiment using a spectrometer in normal adjustment fitted
with a plane transmission grating and using monochromatic light of wave-
length 5-89 x 10-5 cm, diffraction maxima are obtained with telescope
settings of 153° 44’, 124° §’, 76° 55" and 47° 16’, the central maximum being
at 100° 30’. Show that these observations are consistent with normal incidence
and calculate the number of rulings per cm of the grating.

If this grating is replaced by an opaque plate having a single vertical slit
2-00 X 10-2 cm'wide, describe and explain the diffraction pattern which may
now be observed. Contrast the appearance of this pattern with that produced
by the grating. (N.)

20. (@) What is meant by (i) diffraction, (ii) superposition of waves? Describe
one phenomenon to illustrate each in the case of sound waves.

(b) The floats of two men fishing in a lake from boats are 22-5 metres apart.
A disturbance at a point in line with the floats sends out a train of waves
along the surface of the water, so that the floats bob up and down 20 times
per minute. A man in a third boat observes that when the float of one of his
colleagues is on the crest of a wave that of the other is in a trough,-and that
there is then one crest between them. What is the velocity of the waves?
(0. & C.)

21. Give an account of the theory of the production of a spectrum by
means of a plane diffraction grating. How does it differ from the spectrum
produced by means of a prism? :

Parallel light consisting of two monochromatic radiations of wavelengths
6 X 105 cm and 4 x 10-5 cm falls normally on a plane transmission
grating ruled with 5000 lines per cm. What is the angular separation of the
second-order spectra of the two wavelengths? (C.)

22. A pure spectrum is one in which there is no overlapping of light of
different wavelengths. Describe how you would set up a diffraction grating to
display on a screen as close an approximation as possible to a pure spectrum.
Explain the purpose of each optical component which you would use.

A grating spectrometer is used at normal incidence to observe the light
from a sodium flame. A strong yellow line is seen in the first order when the
telescope axis is at an angle of 16° 26’ to the normal to the grating. What is
the highest order in which the line can be seen? , ,

The grating has 4800 lines per cm; calculate the wavelength of the yellow
radiation. ,

What would you expect to observe in the spectrometer set to observe the
first-order spectrum if a small but very bright source of white light is placed
close to the sodium flame so that the flame is between it and the spectrometer?
(0.&C)

23. Describe how you would determine the wavelength of monochromatic
light using a diffraction grating and a spectrometer. Give the theory of the
method.

A filter which transmits only light between 6300 A and 6000 A is placed
between a source of white light and the slit of a spectrometer; the grating has
5000 lines to the centimetre; and the telescope has an.objective of focal length
15 cm with an eyepiece of focal length 3 cm. Find the width in millimetres of
the first-order spectrum formed in the focal plane of the objective. Find also
the angular width of this spectrum seen through the eyepiece. (0.)
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Polarisation ;

24. ‘What is meant by plane of polarisation? Explain why the phenomenon
of polarisation is met with in dealing with light waves, but not with sound
waves.

Describe and explain the action of (a) a nicol prism, (b) a sheet of Polaroid.

How can a pair of Polaroid sheets and a source of natural light be used to
produce a beam of light the intensity of which may be varied in a calculable
manner? (L.)

25. Explain what is meant by the statement that a beam of light is plane
polarised. Describe one experiment in each instance to demonstrate (a)
polarisation by reflexion, (b) polarisation by double refraction, (c) polarisation
by scattering.

The refractive index of diamond for sodium light is 2-417. Find the angle
of incidence for which the light reflected from diamond is completely plane
polarised. (L.)

26. Give an account of the action of (a) a single glass plate. (b) a Nicol
prism, in producing plane-polarised light. State one disadvantage of each
method.

Mention two practical uses of polarising devices. (N.)

27. Describe how, using a long, heavy rope, you would demonstrate (a)
a plane-polarised wave, and (b) a stationary wave.

Give a short account, with diagrams, of three ways in which plane-polarised
light is obtained (other than by using ‘polaroid’). State some uses of polarised
light.

Two polaroid sheets are placed close together in front of a lamp so that no
light passes through them. Describe and explain what happens when one sheet
is slowly rotated, the other remaining in its original position. (C.)

28. Answer two of the following:

(i) How may it be shown that the radiation from (a) a sodium lamp, and
(b) a radio transmitter (such as a broadcasting station or a microwave
source) consists of waves?

(ii) Explain what is meant by the polarisation of light, and describe how you
would demonstrate it. Why is light from most light sources unpolarised?

(iii) When a diffraction grating is illuminated normally by monochromatic
light an appreciable amount of light leaves the grating in certain directions.
Explain this phenomenon, and show how these directions may be predicted.
(0.&C)

29. What is meant by (a) polarised light, (b) polarising angle? Describe
and explain two methods for producing plane-polarised light.

Calculate the polarising angle for light travelling from water, of refractive
index 1-33, to glass, of refractive index 1-53. (L.)

30. A beam of plane-polarised light falls normally on a sheet of Polaroid,
which is at first set so that the intensity of the transmitted light, as estimated
by a photographer’s light-meter, is a maximum. (The meter is suitably
shielded from all other illumination.) Describe and explain the way in which
you would expect the light-meter readings to vary as the Polaroid is rotated
in stages through 180° about an axis at right angles to its plane.

How would you show experimentally (a) that calcite is doubly refracting,
(b) that the two refracted beams are plane polarised, in planes at right angles
to one another, and (c) that in general the two beams travel through the
crystal: with different velocities? (0.)
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31. What is plane-polarised light?

Explain why two images of an object are seen through a crystal of Iceland
Spar. What would be seen if the object were viewed through two crystals, one
of which was slowly rotated about the line of vision?

How would you produce.a plane-polarised beam of light by reflection from
a glass surface? (C.)

32. What is meant by the polarisation of light? How is polarisation
explained on the hypothesis that light has wave properties?

Describe how polarisation can be produced and detected by reflexion.
Mention another way of obtaining polarised light and describe how you
would determine which of the two methods is the more effective.

Describe briefly two uses of polarised light. (N.)

33. Give an account of the evidence for believing that light is a wave
motion. What reason is there for believing light waves to be transverse waves?

Two dishes A4 and B each contain liquid to a depth of 3-000 cm. A4 contains
alcohol, B a layer of water on which is a layer of transparent oil. The depths
of the oil and water are adjusted so that for monochromatic light passing
vertically through them, the number of wavelengths is the same in 4 and B.
Find the depth of the water layer, if the refractive indices of alcohol, water
and oil are respectively 1-:363, 1-333 and 1-475. (L.)



