chapter twenty-six

Characteristics, properties, and velocity
of sound waves

CHARACTERISTICS OF NOTES

NoOTES may be similar to or different from each other in three respects:
(1) pitch, (i) loudness, (iii) quality; so that if each of these three quantities
of a particular note is known, the note is completely defined or “char-
acterised”.
Pitch

Pitch is analogous to colour in light, which is characterised by the
wavelength, or by the frequency, of the electromagnetic vibrations
(p. 690). Similarly, the pitch of a note depends only on the frequency of
the vibrations, and a high frequency gives rise to a high-pitched note. A
low frequency produces a low-pitched note. Thus the high-pitched
whistle of a boy may have a frequency of several thousand Hz, whereas
the low-pitched hum due to A.C. mains frequency when first switched
on may be a hundred Hz. The range of sound frequencies is about 15
to 20000 Hz and depends on the observer.

Musical Intervals

If a note of frequency 300 Hz, and then a note of 600 Hz, are sounded
by a siren, the pitch of the higher note is recognised to be an upper
octave of the lower note. A note of frequency 1000 Hz is recognised
to be an upper octave of a note of frequency 500 Hz, and thus the
musical interval between two notes is an upper octave if the ratio of
their frequencies is 2: 1. It can be shown that the musical interval
between two notes depends on the ratio of their frequencies, and
not on the actual frequencies. The table below shows the various

Note .. .. .. C D E F G A B c
doh | ray | me | fah [ soh | lah | te | doh
Natural (Diatonic) ScaJe

Frequency .. 256 | 288 | 320 | 341 | 384 | 427 | 480 | 512
N N N N N o
Intervals between notes .. 9/8 10/9 16/15 9/8 10/9 9/8 16/15
Intervals above C 1-000( 1-125 1-250; 1-333( 1-500; 1-667| 1-875) 2-000
Equal Temperament Scale
intervals above C . 1-:000{ 1-122} 1-260( 1-335| 1-498| 1-682) 1-888| 2-:000

Note 1.—There are 12 semitones to the octave in the scale of equal temperament;
each semitone has a frequency ratio of 21/12,

NgtﬁeIZZ—The frequency of C is 256 on the scale of Helmholtz above; in music
itis
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musical intervals and the corresponding ratio of the frequencies of the
notes.

Intensity and Loudness

The intensity of a sound at a place is defined as the energy per second
flowing through one square metre held normally at that place to the
direction along which the sound travels. As we go-farther away from a
source of sound the intensity diminishes, since the intensity decreases -
as the square of the distance from the source (see also p. 565).

Suppose the displacement y of a vibrating layer of air is given by
y = asin ot, where o = 27/T and q is the amplitude of vibration, see -
equation (1), p. 577. The velocity, v, of the layer is given by

d;
v=2 — wacos wt,

dt
and hence the kinetic energy, W, is given by
W = i mv? = } mo?a® cos? ot . . @)

where m is the mass of the layer. The layer also has potential energy as
it vibrates. Its total energy, W, which is constant, is therefore equal to
the maximum value of the kinetic energy. From (i), it follows that

Wy =1tmo?a® . . (i)

In 1 second, the air is disturbed by the wave over a dlstance Vcm.,,
where V is the velocity of sound in. my s—1; and if the area of cross- -
section of the air is 1 m?, the volume of air disturbed is ¥ m3. The
mass of air disturbed per second is thus Vp kg, where p is the density
of air in kg m—2, and hence, from (ii),

W=13%Vpo2a® . . . . (i)
It therefore follows that the intensity of a sound due to a wave of given
Jrequency is proportional to the square of its amplitude of vibration.

It can be seen from (ii) that the greater the mass m of air in vibration,
the greater is the intensity of the sound obtained. For this reason the
sound set up by the vibration of the diaphragm of a telephone earpiece
cannot be heard except with the ear close to the earpiece. On the other
hand, the cone of a loudspeaker has a large surface area, and thus
disturbs a large mass of air when it vibrates, giving rise to a sound of
much larger intensity than the vibrating diaphragm of the telephone
earpiece. It is difficult to hear a vibrating tuning-fork a small distance
away from it because its prongs set such a small mass of air vibrating.
If the fork is placed with its end on a table, however, a much louder
sound is obtained, which is due to the large mass of air vibrating by
contact with the table.

Loudness is a sensation, and hence, unlike intensity, it is difficult to
measure because it depends on the individual observer. Normally, the
greater the intensity, the greater is the loudness of the sound (see p. 607).

The Decibel

We are already familiar with the fact that when the frequency of a
note is doubled its pitch rises by an octave. Thus the increase in pitch
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sounds the same to the ear when the frequency increases from 100 to
200 Hz as from 500 to 1000 Hz. Similarly, it is found that increases in
loudness depend on the ratio of the intensities, and not on the absolute
differences in intensity.

If the power of a source of sound increases from 0-1 watt to 0-2 watt
and then from 0-2 watt to 0-4 watt, the loudness of the source to the
ear increases in equal steps. The equality is thus dependent on the
equality of the ratio of the powers, not their difference, and in com-
mercial practice the increase in loudness is calculated by taking the
logarithm of the ratio of the powers to the base 10, which is log,4 2, or
0-3, in this case.

Relative intensities or powers are expressed in bels, after Graham
Bell, the inventor of the telephone. If the power of a source of sound
changes from P, to Py, then

number of bels = log,, (%—)
1

In practice the bel is too large a unit, and the decibel (db) is therefore
adopted. This is defined as one-tenth of a bel, and hence in the above

case
number of decibels = 10 log;, (% )
1

The minimum change of power whichthe ear is able to detect is about
1 db, which corresponds to.an increase in power of about 25 per cent.

Calculation of Decibels

Suppose the power of a sound from a loudspeaker of a radio receiver
is 50 milliwatts, and the volume control is turned so that the power
increases to 500 milliwatts. The increase in power is then given by

lOlogm( ) =10 X log—gg:= 10 db.

If the volume control is turned so that the power increases to 1000
milliwatts, the increase in power compared with the original sound

= 10log;e (%) = 10log,; 20 = 13 db.

If the volume control is turned down so that the power decreases from
1000 to 200 milliwatts, the change in power

2
= 10 log,, ( %%- ) = 101log;o2 — 101log,,10 = — 7 db.

- The minus indicates a decrease in power. Besides its use in acoustics the
decibel is. used by radio -and electrical engineers in dealing with changes
in electrical power.

Intensity Levels. Threshold of Hearing

. Since the intensity.of sound is defined as the energy per second crossing
1-metre? normal to the direction of the sound, the unit of intensity is
“watt metre=2", symbol “W m~2". The intensity level of a source is its
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intensity relative to some agreed ‘zero’ intensity level. If the latter
has an intensity of P, watt metre—2, a sound of intensity P watt metre—2
has an intensity level defined as:
10 log,, (%—) db.
1]

The lowest audible sound at a frequency of 1000 Hz, which is
called the threshold of hearing, corresponds to an intensity P, of 10-12
watt m~2 or 10-1°% microwatt cm—2. This is chosen as the ‘zero’ of
sound intensity level. An intensity level of a low sound of + 60 db is
60 .decibels or 6 bels higher than 10-12 watt metre—2. The intensity is
thus 10¢ times as great, and is therefore equal to 10% x 10-2 or 10—¢
Wm-2,

Calculation of intensity level. The difference in intensity levels
of two sounds of intensities P;, P, watt metre~2 respectively is
10 log,o(P,/P,) db. Thus the difference in intensity levels of a sound of
intensity 8 X 10-5 W m~2 due to a person talking, and one of an
intensity 10~1 W m~2 due to an orchestra playing,

—5
=10 log,, (§—>1<01_91——) = — 40 4 10log,, 8 = — 31 db.
The negative sign indicates a decrease in intensity level. Similarly, if two
‘intensity levels differ by 20 decibels, the ratio P'/P of the two intensities

is given by
10 10g 10( % ) = 20,
PI

—_—== 2 —
or P 10 100.

A source of sound such as a small loudspeaker produces a sound
intensity round it proportional to 1/d?, where d is the distance from the
loudspeaker (p. 607). Suppose the intensity level is 10 db at a distance
of 20 m from the speaker. At a distance of 40 m the intensity will be
four times less than at 20 m, a reduction of 10 log,o 4 db or about 6 db.

intensity level here = 10 db — 6 db = 4 db.
At a point 10 m from the speaker the intensity will be four times greater
than at 20 m. The intensity level here is thus 10 - 6 or 16 db.

If the electrical power supplied to the loudspeaker is doubled, the
sound intensity at each point is doubled. Thus if the original intensity
level was 16 db, the new intensity level is higher by 10 log,e 2 db or
about 3 db. The new intensity level is hence 19 db.

Loudness. The Phon

The loudness of a sound is a sensation, and thus depends on the
observer, whereas power, or intensity, of a sound is independent of the
observer. Observations show that sounds which appear equally loud
to a person have different intensities or powers, depending on the
frequency, f, of the sound. The curves a, b, ¢ represent respectively
three values of equal loudness, and hence the intensity at X, when the
frequency is 1000 Hz, is less than the intensity at Y, when the fre-
quency is 500, although the loudness is the same, Fig. 26.1.
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Intensity

}

!
500 1000 ——r
FiG. 26.1. Curves of equal loudness.

In order to measure loudness, therefore, scientists have adopted a
“standard” source having a frequency of 1000 Hz, with which all other
sounds are compared. The source H whose loudness is required is
placed near the standard source, and the latter is then altered until the
loudness is the same as H. The intensity or power level of the standard
source is then measured, and if this is n decibels above the threshold
value (10—10 microwatt per sq cm, p. 609) the loudness is said to be
n phons. The phon, introduced in 1936, is thus a unit of loudness, whereas
the decibel is a unit of intensity or power. Noise meters, containing a
microphone, amplifier, and meter, are used to measure loudness, and
are calibrated directly in phons. The “threshold of feeling”, when
sound produces a painful sensation to the ear, corresponds to a loudness
of about 120 phons.

Quality or Timbre

If the same note is sounded on the violin and then on the piano, an
untrained listener can tell which instrument is being used, without
seeing it. We say that the quality or timbre of the note is different in
each case. A

The waveform of a note is never simple harmonic in practice; the
nearest approach is that obtained by sounding a tuning-fork, which
thus produces what may be called a “pure” note, Fig. 26.2 (i). If the
same note is played on a violin and piano respectively, the waveforms
produced might be represented by Fig. 26.2 (ii), (iii), which have the
same frequency and amplitude as the waveform in Fig. 26.2 (i). Now
curves of the shape of Fig. 26.2 (ii), (iii) can be analysed mathematically
into the sum of a number of simple harmonic curves, whose frequencies
are multiples of f;, the frequency of the original waveform; the ampli-
tudes of these curves diminish as the-frequency increases. Fig. 26.2 (iv),
for example, might be an analysis of a curve similar to Fig. 26.2 (iii),
corresponding to a note on a piano. The ear is able to detect simple
harmonic waves (p. 595), and thus registers the presence of notes of
frequencies 2f, and 3f,, in addition to fo, when the note is sounded on
the piano. The amplitude of the curve corresponding to f, is greatest,
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I\ \ fork” ‘
l \()/ \ | \/ \ f,
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(i)

I N\ Piano A3,
\./ \/ (iv)

(iii)

Fi1G. 26.2. Wave-forms of notes.

Fig. 26.2 (iv), and the note of frequency f, is heard predominantly
because the intensity is proportional to the square of the amplitude
(p. 607). In the background, however, are the notes of frequencies 2fq,
3fo, which are called the overtones. The frequency fo is called the
fundamental.

As the waveform of the same note is different when it is obtained from
different instruments, it follows that the analysis of each will differ; for
example, the waveform of a note of frequency fo from a violin may
contain overtones of frequencies 2fo, 4fo, 6fo. The musical “background”
to the fundamental note is therefore different when it is sounded on
different instruments, and hence the overtones present in a note determine
its quality or timbre.

A harmonic is the name given to a note whose frequency is a simple
multiple of the fundamental frequency fo. The latter is thus termed the
“first harmonic”; a note of frequency 2f, is called the “second har-
monic”, and so on. Certain harmonics of a note may be absent from
its overtones; for example, the only possible notes obtained from an
organ-pipe closed at one end are f;, 3fy, 5/, 7fp, and so on (p. 647).

Helmholtz Resonators

HELMHOLTZ, one of the greatest scientists of the nineteenth century,
devised a simple method of detecting the overtones accompanying the
fundamental note. He used vessels, P, Q, of different sizes, containing
air which “responded” or resonated (see p. 653) to a note of a particular
frequency, Fig. 26.3. When a sound wave entered a small cavity or neck

FiG. 26.3. Helmholtz resonators.
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a in the resonator, as the vessel was called, an observer at b on the other
side heard a note if the wave contained the frequency to which the
resonator responded. By using resonators of various sizes, which were
themselves singularly free from overtones, Helmholtz analysed the
notes obtained from different instruments.

‘P o Theory of Resonator
et We shall now see how the frequency of a
- - resonator depends on the volume ¥ of air in-
NN =" side it; and to define the situation, suppose
¥ we have a bottle with a narrow neck of cross-
mg sectional area a and containing air of mass
4 m, Fig. 26.4.
P
If the pressure outside is p,, and the air-
v pressure inside is p, then, for equilibrium,
Py + mg = pa N (1)

When the air in the vessel is resonating to a par-

ticular note, the air in the neck moves up and

FIG. 26.4. Theory of a down, acting like a damper or piston on the

Resonator. large mass of air of volume ¥ beneath the neck.

Suppose the air in the neck moves downward

through a distance x at an instant. Then, assuming an adiabatic contraction,
the increased pressure p, in the vessel is given by

p1(V — ax)r = pV.

. _ | 4 Y ax Y
Soop=p [V_ax] —p[l+V_ax]
— yax
=P [1+V—ax]’

by binomial expansion, assuming ax is small compared with (¥ — ax); this
is true for a narrow neck connected to a large volume V.

ax ..
Vyi p . . . . (i)

D1 —p =

The net downward force, P, on the air in the resonator
= p¢a + mg — p1a = pa — pa, from (i).

Hence, from (i}
ypax = ypatx
V_ax @ v
neglecting ax compared with V. From the relationship “force = mass X
acceleration”, it follows that

P=-

ZYPEX X acen.,
v
ypa®
or acen, = — —— X Xx.

my
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Thus the motion of the air in the neck is simple harmonic, and the period T'is

given by W
T=2r J =
ypa

Hence the frequency, f. is given by
1 1 a>
f YP

= T = 7 -7 . . . . (i)
The velocity of sound, v, is given by v = v o/ o, where p is the density of the
air (p. 624), or yp = v2. If l is the length of the neck, the mass m = alo. Thus
the frequency f can also be expressed by

_ 1 viea® v “a .
f—Z—’E»\/ aIpV_Fr/\/IV ' ) Y

From these formulae for f, it follows that
2V = constant.
The adiabatic changes at the neck are not perfect, and this result is thus only
approximately true. In practice, the law more nearly obeyed is that given by
f2 (V4 ¢) = constant.
where c is a “correction” to V.

Experiment. In an experiment to verify the law, tuning-forks of
known frequency, a bottle with a narrow neck, and a pipette and burette,
are required. Water is run slowly into the bottle until resonance is
obtained with the lowest note, for example. The volume of air ¥ which
is resonating is then found by subtracting the volume of the bottle below
the neck, determined in a preliminary experiment, from the water run
in. This is repeated for the various forks, and a graph of ¥V is plotted
against 1/f2 A straight line passing close to the origin is obtained, thus
showing that V + ¢ = d|f?, where dis a constant, or f*(V -+ ¢) = constant.

PROPERTIES OF SOUND WAVES
Reflection

Like light waves, sound waves are reflected from a plane surface so
that the angle of incidence is equal to the angle of reflection. This can
be demonstrated by placing a tube T, in front of a plane surface AB
and blowing a whistle gently at S, Fig. 26.5. Another tube T,, directed
towards N, is placed on the other side of the normal NQ, and moved

A N B until a sensitive flame (see p. 650),
or a microphone connected to a
cathode-ray tube, is considerably
affected at R, showing that the
reflected wave passes along NR.
It will then be found that angle

|
|
T, | T, RNQ = angle SNQ.
| It can also be demonstrated that
| sound waves come to a focus when
R | °S they are incident on a curved con-

Q cave mirror. A surface shaped like
FIG. 26.5. Reflection of sound. a parabola reflects sound waves to
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long distances if the source of sound is placed at its focus (see also p.
404). The famous whispering gallery of St. Paul’s is a circular-shaped
chamber whose walls repeatedly reflect sound waves round the gallery,
so that a person talking quietly at one end can be heard distinctly at the
other end. '

Acoustics of Rooms, Reverberation

A concert-hall, lecture-room, or a broadcasting studio requires special
design to be acoustically effective. The technical problems concerned
were first investigated in 1906 by SABINE in America, who was con-
sulted about a hall in which it was difficult for an audience to hear
the lecturer.

Generally, an audience in a hall hears sound from different directions
at different times. They hear (a) sound directly from the speaker or
orchestra, as the case may be, (b) sound from echoes produced by walls
and ceilings, (¢) sound diffused from the walls and ceilings and other
objects present. The echoes are due to regular reflection at a plane
surface (p. 391), but the diffused sound is scattered in different direc-
tions and reflection takes place repeatedly at other surfaces. When
reflection occurs some energy is absorbed from the sound wave, and
after a time the sound diminishes below the level at which it can be
heard. The perseverance of the sound after the source ceases is known
as reverberation. In the case of the hall investigated by Sabine the time
of reverberation was about 5% seconds, and the sound due to the first
syllable of a speaker thus overlapped the sound due to the next dozen
or so syllables, making the speech difficult to comprehend. The quality
of a sound depends on the time of reverberation. If the time is very
short, for example 0-5 second, the music from an orchestra sounds thin
or lifeless; if the time too long the music sounds muffled. The rever-
beration time at a B.B.C. concert-hall used for orchestral performances
is about 12 seconds, whereas the reverberation time for a dance-band
studio is about 1 second.

Sabine’s Investigations. Absorptive Power

Sabine found that the time T of reverberation depended on the
volume V of the room, its surface area 4, and the absorptive power, a,
of the surfaces. The time 7"is given approximately by
kv
ad’
where k is a constant. In general some sound is absorbed and the rest
is reflected; if too much sound is reflected T is large. If many thick
curtains are present in the room too much sound is absorbed and T is
small.

Sabine chose the absorptive power of unit area of an open window as
the unit, since this is a perfect absorber. On this basis the absorptive
power of a person in an audience, or of thick carpets and rugs, is 0-5,
linoleum has an absorptive power of 0-12, and polished wood and glass
have an absorptive power of 0-01. The absorptive power of a material
depends on its pores to a large extent; this is shown by the fact that an

T=
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unpainted brick has a high absorptive power, whereas the painted brick
has a low absorptive power. :

From Sabine’s formula for T it follows that the time of reverberation
can be shortened by having more spectators in the hall concerned, or
by using felt materials to line some of the walls or ceiling. The seats
in an acoustically-designed lecture-room have plush cushions at their
backs to act as an absorbent of sound when the room is not full. B.B.C.
studios used for plays or news talks should have zero reverberation
time, as clarity is all-important, and the studios are built from special
plaster or cork panels which absorb the sound completely. The structure
of a room also affects the acoustics. Rooms with large curved surfaces
tend to focus echoes at certain places, which is unpleasant aurally to the
audience, and a huge curtain was formerly hung from the roof of the
Albert Hall to obscure the dome at orchestral concerts.

Refraction

Sound waves can be refracted as well as reflected. TYNDALL placed
a watch in front of a balloon filled with carbon dioxide, which is heavier
than air, and found that the sound was heard at a definite place on the
other side of the balloon. The sound waves thus converged to a focus on
the other side of the balloon, which therefore has the same effect on
sound waves as a convex lens has on light waves (see Fig. 28.12, p. 684).
If the balloon is filled with hydrogen, which is lighter than air, the
sound waves diverge on passing through the balloon. The latter thus
acts similarly to a concave lens when light waves are incident on it
(see p. 683).

The refraction of sound explains why sounds are easier to hear at
night than during day-time. In the latter case the upper layers of air
are colder than the layers near the earth. Now sound travels faster the
higher the temperature (see 624), and sound waves are hence refracted
in a direction away from the earth. The intensity of the sound waves thus
diminish. At night-time, however, the layers of air near the earth are
colder than those higher up, and hence sound waves are now refracted
towards the earth, with a consequent increase in intensity.

— Wind

o
O

Wind
———

FIG. 26.6. Refraction of sound.

For a similar reason, a distant observer O hears a sound from a source
S more easily when the wind is blowing towards him than away from
him, Fig. 26.6. When the wind is blowing towards O, the bottom of the
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sound wavefront is moving slower than the upper part, and hence the
wavefronts veer towards the observer, who therefore hears the sound
easily. When the wind is blowing in the opposite direction the reverse
is the case, and the wavefronts veer upwards away from the ground and
O. The sound intensity thus diminishes. This phenomenon is hence
another example of the refraction of sound.

Interference of Sound Waves

Besides reflection and refraction, sound waves can also exhibit the
phenomenon of interference, whose principles we shall now discuss.

Suppose two sources of sound, A, B, have exactly the same frequency
and amplitude of vibration, and that their vibrations are always in
phase with each other, Fig. 26.7. Such sources are called “coherent’’
sources. Their combined cffect at a point is obtained by adding algebraic-
ally the displacements at the point due to the sources individually; this
is known as the Principle of Superposition. Thus their resultant effect
at X, for example, is the algebraic sum of the vibrations at X due to
the source A alone and the vibrations at X due to the source B alone.
If X is equidistant from A and B, the vibrations at X due to the two
sources are always in phase as (i) the distance AX travelled by the wave
originating at A is equal to the distance BX travelled by the wave
originating at B, (ii) the sources
A, B are assumed to have the
same frequency and to be always A
in phase with each other. Fig. 26.8
(i), (ii) illustrate the vibrations at
X due to A, B, which have the B
same amplitude. The resultant
vibration at X is obtained by FiG. 26.7. Interference of sound.
adding the two curves, and has
an amplitude double that of either curve and a frequency the same as
either, Fig. 26.8 (iii). Now the energy of a vibrating source is pro-
portional to the square of its amplitude (p. 607). Consequently the
sound energy at X is four times that due to A or B alone, and a loud
sound is thus heard at X. As A and B are coherent sources, the loud
sound is permanent. :

(i)Due to A Wﬁé’ﬁme
(ii)Due to B ‘%Av%%é__ﬂme

(iii) Resultant — Time

FiG. 26.8. Vibrations at X.
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If Q is a point such that BQ is greater than AQ by a whole number
of wavelengths (Fig. 26.7), the vibration at Q due to A is in phase with
the vibration there due to B (see p. 593). A permanent loud sound is
then obtained at Q. Thus a permanent loud sound is obtained at any
point Y if the path difference, BY — AY, is given by

BY — AY =mA,
where A is the wavelength of the sources A, B, and m is an integer.

Destructive Interference

Consider now a point P in Fig. 26.7 whose distance from B is half a
wavelength longer than its distance from A, i.e., AP — BP = A/2. The
vibration at P due to B will then be 180° out of phase with the vibra-
tion there to A (see p. 586), Fig. 26.9 (i), (ii). The resultant effect at P is
thus zero, as the displacements at any instant are equal and opposite
to each other, Fig. 26.9 (iii). No sound is therefore heard at P, and the
permanent silence is said to be due to ‘“‘destructive interference” be-
tween the sound waves from A and B.

(i) Due to A Wﬁ'_—»ﬂme
(i) Due 10 8 NI NFNF NSNS = Tme

(iii) Resultant Time
FiG. 26.9. Vibrations at P.

If the path difference, AP — BP, were 31/2 or 5)/2, instead of A/2,
permanent silence would also exist at P as the vibrations there due to
A, B would again be 180° out of phase. Summarising, then,

silence occurs if the path-difference is an odd number of half wave-
lengths, and

a loud sound occurs if the path-difference is a whole number of wave-
lengths

The total sound energy in all the positions of loud sound discussed
above is equal to the total sound energy of the two sources A, B, from
the principle of the conservation of energy. The extra sound at the
positions of loud sound thus makes up for the absent sound in the
positions of silence. .

Quincke’s Tube. Measurement of Velocity of Sound in a Tube

‘QUINCKE devised a simple method of obtaining permanent inter-
ference between two sound waves. He used a closed tube SAEB which
had openings at S, E, and placed a source of sound at S, Fig. 26.10. A
wave then travelled in the direction SAE round the tube, while another
wave travelled in the opposite direction SBE; and since these waves
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are due to the same source, S, they always set out in phase, i.c., they are
coherent.

Like a trombone, one side, B, of the tube can be pulled out, thus
making SAE, SBE of different lengths. When SAE and SBE are equal
in length an observer at E hears a loud sound, since the paths of the
two waves are then equal. As B is pulled out the sound dies away and
becomes a minimum when the path difference, SBE — SAE, is 1/2,.
where A is the wavelength. In this case the two waves arrive 180° out
of phase (p. 617). If the tube is pulled out farther, the sound increases
in loudness to a maximum; the path difference is then X. If k is the
distance moved from one position of minimum sound, MN say, to the
next position of minimum sound, PQ say, then 2k = A, Fig. 26.10. Thus
the wavelength of the sound can be simply obtained by measuring k.

\S/ M
Y
1 1p %
A L Z
/
I 1Q
| )é
/E\ N AN

Movable

[=]

F1G. 26.10. Quincke’s tube.

The velocity of sound in the tube is given by ¥ = fA, where fis the
frequency of the source S, and thus ¥ can be found when a source of
known frequency is used. In a particular experiment with Quincke’s
tube, the tube B was moved a distance 4-28 cm between successive
minima of sound, and the frequency of the source was 4000 Hz.

Thus A=2 X 428 cm,
and V=fA= 4000 X 2 X 428 = 34240 cm s~! = 342-4 m s—!

It can be seen that, unlike reflection and refraction, the phenomenon
of interference can be utilised to measure the wavelength of sound
waves. We shall see later that interference is also utilised to measure
the wavelength of light waves (p. 689).

Velocity of Sound in Free Air. Hebb’s Method

In 1905 HeBB performed an accurate experiment to measure the
velocity of sound in free air which utilised a method of interference. He
carried out his experiment in a large hall to eliminate the effect of
wind, and obtained the temperature of the air by placing thermometers
at different parts of the room. Two parabolic reflectors, R,, R,, are
placed at each end of the hall, and microphones, M,, M, are positioned
at the respective foci, S;, S, to receive sound reflected from R,, R,,
Fig. 26.11. By means of a transformer, the currents in the microphones
are induced into a telephone earpiece P, so that the resultant effect of
the sound waves received by M,, M, respectively can be heard.

A source of sound of known constant frequency is placed at the
focus S,. The sound waves are reflected from R, in a parallel direction
(p. 613), and travel to R, where they are reflected to the focus S, and
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received by M, The microphone M, receives sound waves directly
from the source, and hence the sound heard in the telephone earpiece
is due to the resultant effect of two coherent sources. With the source

FiG. 26.11. Hebb’s method.

and microphone maintained at its focus S,, R, is moved along its axis in
one direction. The positions of R, are noted when minima of sound are
heard; and since the distance between successive minima corresponds
to one wavelength, }, the velocity of sound can be calculated from the
relation ¥ = fA, as f and A are known.

Other Velocity of Sound Determinations

The velocity of sound in air has been determined by many scientists.
One of the first accurate determinations was carried out in 1738 by
French scientists, who observed the time between the flash and the
hearing of a cannon report about 30 km away. Their results con-
firmed that the velocity of sound increased as the temperature of the
air increased (p. 624), and they obtained the result of 362 metres per
second for the velocity at 0° C. Similar experiments were carried out by
French scientists in 1822. In 1844 experiments carried out in the Tyrol
district, several thousand metres above sea-level, showed that the
velocity of sound was independent of the pressure of the air (p. 624).

REGNAULT, the eminent French experimental scientist of the nine-
teenth century, carried out an accurate series of measurements on the
velocity of sound in 1864. Guns were fired at one place, breaking an
electrical circuit automatically, and the arrival of the sound at a distant
place was recorded by a second electrical circuit. Both circuits actuated
a pen or style pressing against a drum rotating at a steady speed round
its axis, which is known as a chronograph. Thus marks were made on
the drum at the instant the sound occurred and the instant it was received.
The small interval corresponding to ‘the distance between the marks
was determined from a wavy trace made on the drum by a style attached
to an electrically-maintained tuning-fork whose frequency was known,
and the speed of sound was thus calculated.

The velocity of sound in water was first accurately determined in
1826. The experiment was carried out by immersing a bell in the Lake
of Geneva, and arranging to fire gunpowder at the instant the bell was
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struck. Miles away, the interval was recorded between the flash and
the later arrival of the sound in the water, and the velocity was then
calculated. This and other experiments have shown that the velocity in
water is about 1435 m s, more than four times the speed in air.

An objection to all these methods of determining velocity is the
unknown time lag between the receipt of the sound by an observer and
his recording of the sound. The observer has, as it were, a “personal
equation” which must be taken into account to determine the true time
of travel of the sound. In Hebb’s method, however, which utilises
interference, no such personal equation enters into the considerations,
which is an advantage of the method.

Beats

If two notes of nearly equal frequency are sounded together, a periodic
rise and fall in intensity can be heard. This is known as the phenomenon
of beats, and the frequency of the beats is the number of intense sounds
heard per second.

Consider a layer of air some distance away from two pure notes of
nearly equal frequency, say 48 and 56 Hz respectively, which are
sounding. The variation of the displacement, y;, of the layer due to one
fork alone is shown in Fig. 26.12 (i); the variation of the displacement y,,

VT T, k ime
|

Variation of
“n<<.amplitude _

~ -

Ys‘
Resultant

Fi1G. 26.12. Beats (not to scale).

of the layer due to the second fork alone is shown in. Fig. 26.12 (ii).
According to the Principle of Superposition (p. 588), the variation of the
resultant displacement, y, of the layer is the algebraic sum of the two
curves, which varies in amplitude in the way shown in Fig. 26.12 (iii). To
understand the variation of y, suppose that the displacements y;, y, are
in phase at some instant 7, Fig. 26.12. Since the frequency of the curve
in Fig. 26.12 (i) is 48 cycles per sec the variation y; undergoes 3 complete
cycles in {sth second; in the same time, the variation y, undergoes 3}
cycles, since its frequency is 56 cycles per second. Thus y; and y, are 180°
out of phase with each other at this instant, and their resultant y is then
a minimum at some instant T,. Thus T',T, represents tisth of a second
in Fig. 26.12 (iii). In }th of a second from T, y, has undergone 6 com-
plete cycles and y, has undergone 7 complete cycles. The two waves are
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hence in phase again at T3, where T; T represents }th of a second, and
their resultant at their instant is again a maximum, Fig. 26.12 (iii). In
this way it can be seen that a loud sound is heard after every } second,
and thus the beat frequency is 8 cycles per second. This is the difference
between the frequencies, 48, 56, of the two notes, and it is shown soon
that the beat frequency is always equal to the difference of the two nearly
equal frequencies.
It can now be seen that beats are a phenomenon of repeated inter- -

ference. Unlike the cases in sound previously considered, however, the
two sources are not coherent ones. )

Beat Frequency Formula

Suppose two sounding tuning-forks have frequencies f;, f; cycles per
second close to each other. At some instant of time the displacement of
a particular layer of air near the ear due to each fork will be a maximum
to the right. The resultant displacement is then a maximum, and a loud
sound or beat is heard. After this, the vibrations of air due to each fork
go out of phase, and ¢ seconds later the displacement due to each fork
is again a maximum to the right, so that a loud sound or beat is heard
again. One fork has then made exactly one cycle more than the other.
But the number of cycles made by each fork in ¢ seconds is fit and
fat respectively. Assuming f; is greater than f,

s fit—fit=1
fi-fi=y

Now 1 beat has been made in ¢ seconds, so that 1/¢ is the number of beats -
per second or beat frequency.
». fi — f2 = beat frequency.

Mathematical derivation of beat frequency. Suppose y;, . are the displace-
ments of a given layer of air due to two tuning-forks of frequencies f1, fe
respectively. If the amplitudes of each. vibration are equal to-a, then y; =
a sin wyt, y2 = a sin (wet + 0), where ©; = 27 f3, wg = 27fs, and. § is the
constant phase angle between the two variations.

¥y =y1+ y2 = a[sino,t | sin (wet + 0)]
;. y=2asin mltmzt—!-—g) . coS (wl—o)gt_f) :

2 2
. _ . (:)1+6)2 6
. y=Asin 3 t+2)

. w1 — Wy 0
whereA—2acos( 2 t 2).
We can regard 4 as the amplitude of the variation of y. The intensity of the -
resultant note is proportional to 42, the square of the amplitude (p.607) and
A? = 44? cos? (wl-; Wz, g) = 2421 4 cos (w; = ©g) ¢ —.6]

since 2 cos?a = 1 -+ cos 2a. It then follows that thé’iﬁte‘nsity variés at a
frequency f given by ' L o

27rf= Wy — Wa.
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But w; = 271f;, 00 = 271f5 .
2nf=27nf, — 27fe
- S f=h—-Ff
- The frequency f of the beats is thus equal to the difference of the frequencies.

Uses of Beats

The phenomenon of beats can be used to measure the unknown
frequency, f;, of a note. For this purpose a note of known frequency
Ja is used to provide beats with the unknown note, and the frequency f
of the beats is obtained by counting the number made in a given time.
Since fis the difference between f, and /1, it follows that f; = f, — f; or
J1 =15+ f Thus suppose f; = 1000 Hz, and the number of beats per
second made with a tuning-fork of unknown frequency J1is 4. Then
f1= 1004 or 996 Hz. ‘

To decide which value of f; is correct, the end of the tuning-fork
prong is loaded with a small piece of plasticine, which diminishes the
frequency a little, and the two notes are sounded again. If the beats
are increased, a little thought indicates that the frequency of the note
must have been originally 996 Hz. If the beats are decreased, the fre-
quency of the note must have been originally 1004 Hz. The tuning-
fork must not be overloaded, as the frequency may decrease, if it was
1004 Hz, to a frequency such as 995 Hz, in which case the significance
of the beats can be wrongly interpreted.

Beats are also used to “tune” an instrument to a given note. As the
instrument note approaches the given note, beats are heard, and the
instrument can be regarded as “tuned” when the beats are occurring
at a very slow rate,

Velocity of Sound in a Medium
When a sound wave travels in a medium, such as a gas, a liquid, or a
solid, the particles in the medium are subjected to varying stresses, with
resulting strains (p. 585). The velocity of a sound wave is thus partly
governed by the modulus of elasticity, E, of the medium, which is defined

by the relation
stress __ force per unit area

= Strain change in length (or volume)/ original length
. . . . (or volume) (i)
The velocity, V, also depends on the density, p, of the medium, and it

can be shown that
V=J§. ... W
P

When E is in newton per metre? (N m-?) and p in kg m-3, then ¥ is
in metre per second (m s-!). The relation (1) was first derived by
Newton. :

For a solid, E is Young’s modulus of elasticity. The magnitude of E
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for steel is about 2 X 101* N m~2, and the density p of steel is 7800
kg m-3. Thus the velocity of sound in steel is given by

2 x 101 a
_J J 7800 = 5060 m s

For a liquid, E is the bulk modulus of elasticity. Water has a bulk
modulus of 2:04 x 10° N m-?, and a density of 1000 kg m-3. The
calculated velocity of sound in water is thus given by

2:04 x 10°
-1
_A/ 1000 = 1430ms

The proof of the velocity formula requires advanced mathematics, and is
beyond the scope of this book. It can partly be verified by the method of
dnmensxons, however. Thus since density, p, = mass/volume, the dimensions
of p are given by ML-3. The dimensions of force (mass X acoeleratlon)
are MLT-2, the dimensions of area are L?; and the denominator in @)
has zero dimensions since it is the ratio of two similar quantities. Thus the
dimensions of modulus of elasticity, E, are given by

ML
'fﬂ—f,_zor ML1T-2
Suppose the velocity, ¥, == kE®g¥, where k is a constant. The dimensions of
V are LT
LT-! = (ML-T-2)® X (ML-3)¥
using the dimensions of E and p obtained above. Equating the respective
indices of M, L, T on both sides, then

x+y=0 . . . . R (1)}
—-x—=3y=1 . . . . . . (i)
—2x==1 . . . . . (v)
From (iv), x = 1/2, from (ii), y = — 1/2. Thus, as V = kE= gV,
V= kE*p-*

V=kJ£
o

It is not possible to find the magnitude of k by the method of dimensions, but

a rigid proof of the formula by calculus shows that k = 1 since V' = A/ %

Velocity of Sound in a Gas. Laplace’s Correction

The velocity of sound in a gas is also given by V' = J % where E is

the bulk modulus of the gas and p is its density. Now it is shown on p. 162
that E = p, the pressure of the gas, if the stresses and strains in the gas
take place isothermally. The formula for the velocity then becomes

V= J % and as the density, p, of air is 1-29 kg per m? at S.T.P. and
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p =076 x 13600 x 9:8 N m—2;

0-76 x 13600 x 9-8
V= 129
This calculation for ¥ was first performed by Newton, who saw that
the above theoretical value was well below the experimental value
of about 330 m s-1. The discrepancy remained unexplained for
more than a century, when LAPLACE suggested in 1816 that E should
be the adiabatic bulk modulus of a gas, not its isothermal bulk modulus
as Newton had assumed. Alexander Wood in his book Acoustics
(Blackie) points out that adiabatic conditions are maintained in a
gas because of the relative slowness of sound wave oscillations.* It is
shown later that the adiabatic bulk modulus of a gas is yp ‘where y is
- the ratio of the principal specific heats of a gas (i.e., y = ¢,/cy). The
formula for the velocity of sound in a gas thus becomes

V=A/% )

The magnitude of y for air is 1-40, and Laplace’s correction, as it is
known, then amends the value of the velocity in air at 0° C to

1-40 x 0-76 x 13600 x 9-8
= 1-29
This is in' good agreement with the experimental value.

= 280 m s (approx.).

vV

=331 ms-!

Effect of Pressure and Temperature on Velocity of Sound in a Gas

Suppose that the mass of a gas is m, and its volume is v. Its density,
p, is then m/v, and hence the velocity of sound, V¥, is given by

v J w_ [
P m
But pv = mRT, where R is the gas constant for unit mass of the gas
.and T is its absolute temperature. Thus pv/m = RT, and hence

V=V RT . . . . . @

‘Since v and R are constants for a given gas, it follows that the velocity
of sound in a gas is independent of the pressure if the temperature remains
constant. This has been verified by experiments which showed that the
velocity of sound at the top of a mountain is about the same as at the
bottom, p. 619. It also follows from (i) that the velocity of sound is pro-
portional to the square root of its absolute temperature. Thus if the
velocity in air at 16° C is 338 m s~ by experiment, the velocity, V, at
0° C is calculated from

V__J273
338 A 289°

, 273
- from which V= 338 J 289 = 328-5ms-1
-* Jt was supposed for many years that the changes are so rapid that there is no
" time for transfer of heat to. occur. The reverse appears to be the case. At ultrasonic
(very high) frequencies adiabatic conditions no longer hold.
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Ultrasonics

There are sound waves of higher frequency than 20000 Hz, which are
inaudible to a human being. These are known as ultrasonics; and since
velocity = wavelength X frequency, ultrasonics have short wave-
lengths compared with sound waves in the audio-frequency range.

In recent years ultrasonics have been utilised for a variety of industrial
purposes. They are used on board coasting vessels for depth sounding,
the time taken by the wave to reach the bottom of the sea from the
surface and back being determined. Ultrasonics are also used to kill
bacteria in liquids, and they are used extensively to locate faults and
cracks in metal castings, following a method similar to that of radar.
Ultrasonic waves are sent into the metal under investigation,.and the
beam reflected from the fault is picked up on a cathode-ray tube screen
together-with the reflection from the other end of the metal. The position
of the fault can then easily be located.

Production of Ultrasonics

In 1881 Curie discovered that a thin plate of quartz increased or
decreased in length if an electrical battery was connected to its opposite
faces. By correctly cutting the plate, the expansion or contraction could
be made to occur along the axis of the faces to which the battery was
applied. When an alternating voltage of ultrasonic frequency -was
connected to the faces of such a crystal the faces vibrated at the same
frequency, and thus ultrasonic sound waves were produced.

Another method of producing ultrasonics is to place an iron or nickel
rod inside a solenoid carrying an alternating current of ultrasonic
frequency. Since the length of a magnetic specimen increases slightly .
when it is magnetised, ultrasonic sound waves are produced by the
vibrations of the rod.

EXAMPLES

1. How does the velocity of sound in a medium depend upon the elasticity
and density ? Ilustrate your answer by reference to the case of air and of a
long metal rod. The velocity of sound in air being 330-0 m s~* at 0° C and
the coefficient of expansion 1/273 per degree, find the change in velocity per
degree Centigrade rise of temperature. (L.)

First part. The velocity of sound, ¥, is given by ¥ = 4/E[p, where E is the
modulus of elasticity of the medium and p is its density. In the case of air, a .
gas, E represents the bulk of modulus of the air under adiabatic conditions,
and E = yp (see p. 624). Thus ¥ = V/ vp/p for air.

For a long metal rod, E is Young’s modulus for the metal, assuming the
sound travels along the length of the rod.

Second part. Since the coefficient of expansion is 1/273 per degree Centigrade,
the absolute temperature corresponding to ¢° C is given by (273 + 7). The
velocity of sound in a gas is proportional to the square root of its absolute
temperature, and hence
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v_ |7
Vo A 273°
where V is the velocity at 1° C and V, is the velocity at 0° C.

. 274 274
V= Vo 273‘=330 X J2_‘73=330'6m s-1

change in velocity = 0-6 m s—1
2. How would you find by experiment the velocity of sound in air ? Calculate
the velocity of sound in air in metre second~* at 100° C if the density of air at
S.T.P. is 129 kg m~3, the density of mercury at 0° C 13600 kg m~3, the
specific heat capaclty of air at constant pressure 1-:02, and the specific heat
capacity of air at constant volume 0-72, in kJ kg—K—1. (L.)
First part. See Hebb’s method, p. 618 or p. 587.

Second part. The velocity of sound in air is given by

V= ”—:
with the usual notation. The density, p, of air is 1-29 kg m™3. The pressure p
is given by
p=heg
=076 x 13600 x 9-8 Nm™2

since S.T.P. denotes 76 cm mercury pressure and 0° C. Also,

_Go o

c, 072
A/102><076>< 13600 X 9-8
o 0-72 X 1-293 ’

where V is the velocity at 0° C

But velocity oc /T,
where T is the.absolute temperature of the air. Thus if ¥ is the velocity at
100° C,

2734100 _ 373
' J 273 273
73 J373 X 1-02 X 0:76 X 13600 X 9-8
273 7 273 X 072 X 1293
=388 ms-!

3. State briefly how you would show by experiment that the characteristics
of the transmission of sound are such that (@) a finite time is necessary for
transmission, (b) a material medium is necessary for propagation, (c) the
disturbance may be reflected and refracted. The wavelength of the note
emitted by a tuning-fork, frequency 512 Hz, in air at 17° C is 66-5 cm. If the
density of air at S.T.P. is 1-293 kg m—3, calculate the ratio of the two specific
heat capacities of air. Assume that the density of mercury is 13600 kg m—2. (N.)

First part. See text.
Second part. Since ¥ = fA, the velocity of sound at 17° C. is given by
V =512 X 0665 m s . . . @)
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Now v, J 273

where Vois the velocity at 0° C, since the velocity is propomonal to the squarc :
root of the absolute temperature.:

J 2713 J 2B s1ax 0665 . . (i)

But V,= J 2,‘;;,

where p = 076 m of mercury = 0-76 X 13600 x 9-8 Nm~-2, and p = 1-293
kg m—3.
VX
p
272 X 5122 X 0-665 X 1-293
290 X 0-76 X 13600>< 9-8
=139

Doppler Effect

The whistle of a train or a jet aeroplane appears to increase in pitch
as it approaches a stationary observer; as the moving object passes the
observer, the pitch changes and becomes lowered. The apparent alter-
ation in frequency was first predicted by DOPPLER in 1845, who stated
that a change of frequency of the wave-motion should be observed when
a source of sound or light was moving, and it is accordingly known as
the Doppler effect.

Fi1G. 26.13. Doppler effect.
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The Doppler effect occurs whenever there is a relative velocity between
the source of sound or light and an observer. In light, this effect was
observed when measurements were taken of the wavelength of the
colour of a moving star; they showed a marked variation. In, sound,
the Doppler effect can be demonstrated by placing a whistle in the end
of a long piece of rubber tubing, and whirling the tube in a horizontal
circle above the head while blowing the whistle. The open end of the
tube acts as a moving source of sound, and an observer hears a rise
and fall in pitch as the end approaches and recedes from him.

A complete calculation of the apparent frequency in particular cases
is given shortly, but Fig. 26.13 illustrates how the change of wavelengths,
and hence frequency, occurs when a source of sound is moving towards
a stationary observer. At a certain instant the position of the moving
source is at 4. At four successive seconds before this instant the source
had been at the positions 3, 2, 1, 0 respectively. If ¥ is the velocity of
sound, the wavefront from the source when in the position 3 reaches
the surface A of a sphere of radius ¥ and centre 3 when the source is
just at 4. In the same way, the wavefront from the source when it was
in the position 2 reaches the surface B of a sphere of radius 2V and
centre 2. The wavefront C corresponds to the source when it was in the
position 1, and the wavefront D to the source when it was in the position
O. Thus if the observer is on the right of the source S, he receives wave-
fronts which are relatively more crowded together than if S were
stationary; the frequency of S thus appears to increase. When the
observer is on the left of S, in which case the source is moving away
from him, the wavefronts are farther apart than if S were stationary,
and hence the observer receives correspondingly fewer waves per
second. The apparent frequency is thus lowered.

Calculation of Apparent Frequency

Suppose ¥Vis the velocity of sound in air, u, is the velocity of the source
of sound S, u, is the velocity of an observer O, and fis the true frequency
of the source.

(i) Source moving towards stationary observer. If the source S were
stationary, the f waves sent out in one second towards the observer O

NS T T O
(i)g

f waves

~V-u -

)=

o e [T

f waves

FiG. 26.14. Source moving towards stationary observer.
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would occupy a distance ¥, and the wave length would be Vf, Fig. 26.14.
(). If S moves with a velocity u, towards O, however, the f waves
sent out occupy a distance (V¥ — u,), because S has moved a distance
u, towards O in 1 sec, Fig. 26.14 (ii). Thus the wavelength 4’ of the waves
reachmg O is now (V — ug)/f.

But velocity of sound waves = V.
’ V V
.. apparent frequency, f° =7=(7-:_—79—)—[f
, | 4
f=y—uf - - - O

Since (V — ug)is less than ¥, f*is greater than f; the apparent frequency
thus appears to increase when a source is moving towards an observer.
(ii) Source moving away from stationary observer. In this case the f
waves sent out towards O in 1 sec occupy a distance (V' + u,), Fig. 26.15.

(V+u)

U,

o)

f Waves
FiG. 26.15. Source moving away from stationary observer.

The wavelength X’ of the waves reaching O is thus (¥ + wus)/f, and
hence the apparent frequency f” is given by

,_Y__V
f=%=tuwr
V
e f'=m.f . . . . @

Since (V -+ ug) is greater than ¥, f”is less than £, and hence the apparent
frequency decreases when a source moves away from an observer.

(iii) Source stationary, and observer moving towards it. Since the
source is stationary, the f waves sent out by S towards the moving
observer O occupies a distance ¥, Fig. 26.16. The wavelength of the
waves reaching O is hence Vf, and thus unlike the cases already con-
sidered, the wavelength is unaltered.

[T

Waves

[ 1]

Fic. 26.16. Observer moving towards stationary source.

The velocity of the sound waves relative to O is not ¥, however, as (o]
is moving relative to the source. The velocity of the sound waves relative
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to O is given by (V + wo) in this case, and hence the apparent frequency
f’ is given by )
, (V' + uo) _V+u
= wavelength ~ V|f
_ vV + Uo

i 2 f . . . . )
Since (V' + o) is greater than V, f” —_—
is greater than f; thus the apparent fre- S
quency is increased. . e’/

(iv) Source stationary, and observer moving
away from it, Fig. 26.17. As in the case just Fic.26.17. Observer moving
considered, the wavelength of the waves  2W%ay from stationary
reaching O is unaltered, and is given by Vf.

The velocity of the sound waves relative to O = ¥ — u,, and hence
) V—uo V—u
wavelength  V|f

V—-u
L= N Y ()

Since (V' — uo) is less than ¥, the apparent frequency f* appears to

be decreased.

Source and Observer Both Moving

If the source and the observer are both moving, the apparent frequency
J’ can be found from the formula

apparent frequency, f’, =

VI
=%
where V” is the velocity of the sound waves relative to the observer,
and A’ is the wavelength of the waves reaching the observer. This
formula can also be used to find the apparent frequency in any of the
cases considered before. .
Suppose that the observer has a velocity o, the source a velocity us,
and that both are moving in the same direction. Then
) Vi=V- Uo
and XN=(V - u)f
as was deduced in case (i), p. 628.
, V' V—=u V—-u .
f— AI—(V_us)zf_V_usof. . (l)
If the observer is moving towards the source, ¥’ = V + u,, and the
apparent frequency f” is given by

, V + Uo .

= V—u f . . . ()

From (i), it follows that f/* = f when uo = us, in which case there is no

relative velocity between the source and the observer. It should also be

noted that the motion of the observer affects only F”, the velocity of the

waves reaching the observer, while the motion of the source affects
only X', the wavelength of the waves reaching the observer.

The effect of the wind can also be taken into account in the Doppler
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effect. Suppose the velocity of the wind is uw, in the direction of the
line SO joining the source S to the observer O. Since the air has then a
velocity uy relative to the ground, and the velocity of the sound waves
relative to the air is ¥V, the velocity of the waves relative to ground is
(V + uy) if the wind is blowing in the same direction as SO. All our
previous expressions for f” can now be adjusted by replacing the velocity
Vin it by (V + uy). If the wind is blowing in the opposite direction to
SO, the velocity ¥ must be replaced by (V' — uw).

When the source is moving at an
angle to the line joining the source 0
and observer, the apparent fre-
quency changes continuously. Sup- 9
pose the source is moving along S P,
AB with a velocity v, while the ob- & ot 5
server is stationary at O, Fig. 229. LN
At S, the component velocity of v N
along OS is v cos 6, and is towards F16.26.18. Source direction perpendicular
O. The observer thus hears a note to observer.
of higher pitch whose frequency f* is given by

—— -

N\

fl:V—vcos Oﬁ

where V is the velocity of sound and f is the frequency of the source
of sound. See equation (3), in which #, now becomes v cos 0. When
the source reaches P, Fig. 26.18, the component of v is v cos @ away from
0, and the apparent frequency f” is given by

vV

f =V+ vcos<zf’

from equation (4). The apparent frequency is
0 thus lower than the frequency f of the source.
When the source reaches N, the foot of the
perpendicular from O to AB, the velocity v is
perpendicular to ON and has thus no com-
ponent towards the observer O. If the waves
reach O shortly after, the observer hears a
note of the same frequency f as the source.
Before the source S reaches N, however, it
emits waves, travelling with a velocity Vin air
o which reach O, Fig. 26.19. If Sreaches N at the
FiG.26.19. Frequency heard Same instant as the waves reach O, the observer
when source at N. hears the note corresponding to the instant
when the source was at S. In this case SN = vf and SO = V1, where tis
the time-interval concerned. Thus:

vt v
cos § =~ =—

Ve vV’
The frequency f” of the note heard by O when S just reaches N is
hence given by
4 |4

2
f TV =vcos 8 'f=V——-v"/V'f= | v“"f




632 ADVANCED LEVEL PHYSICS

Doppler’s Principle in Light

The speed of distant stars and planets has been estimated from
measurements of the wavelengths of the spectrum lines which they
emit. Suppose a star or planet is moving with a velocity v away from
the earth and emits light of wavelength A. If the frequency of the vibra-
tions is f cycles per second, then f waves are emitted in one second,
where ¢ = fAand c is the velocity of light in vacuo. Owing to the velocity
v, the f waves occupy a distance (¢ + v). Thus the apparent wavelength
A’ to an observer on the earth in line with the star’s motion is

, __¢+v _c+v _ v
XN o= = .A—(I—I-C)A

S
A — A = “shift” in wavelength = g-/\, . . (i)
and hence ; = fractional change in wavelength = % (ii)

From (i), it follows that A’ is greater than A when the star or planet
is moving away from the earth, that is, there is a “shift” or displace-
ment fowards the red. The position of a particular wavelength in the
spectrum of the star is compared with that obtained in the laboratory,
and the difference in the wavelengths, A’ — 4, is measured. From (i),
knowing A and ¢, the velocity v can be calculated.

If the star is moving towards the earth with a velocity u, the apparent
wavelength A” is given by

,_C—UuU_c—u _ _u
AT = 7 p ./\—(1 c)z\.

A= =2y
[

Since A” is less than A, there is a displacement towards the blue in this
case.

In measuring the speed of a star, a photograph of its spectrum is taken.
The spectral lines are then compared with the same lines obtained by
photographing in the laboratory an arc or spark spectrum of an element
present in the star. If the former are displaced towards the red, the
star is receding from the earth; if it is displaced towards the violet, the
star is approaching the earth. By this method the velocities of the stars
have been found to be between about 10 km s~ and 300 km s~ The
Doppler effect has also been used to measure the speed of rotation of
the sun. Photographs are taken of the east and west edges of the sun;
each contains absorption lines due to elements such as iron vaporised
in the sun, and also some absorption lines due to oxygen in the earth’s
atmosphere. When the two photographs are put together so that the
oxygen lines coincide, the iron lines in the two photographs are dis-
placed relative to each other. In one case the edge of the sun approaches
the earth, and in the other the opposite edge recedes from the earth.
Measurements show a rotational speed of about 2 km s—1
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. Measurement of Plasma Temperature

In very hot gases or plasma, used in thermonuclear fusion experiments,
the temperature is of the order of millions of degrees Celsius. At these
high temperatures molecules of the glowing gas are moving away and
towards the observer with very high speeds and, owing to the Doppler
effect, ‘the wavelength A of a particular spectral line is apparently
changed. One edge of the line now corresponds to an apparently increased
wavelength A, due to molecules moving directly towards the observer,
and the other edge to an apparent decreased wavelength A, due to
molecules moving directly away from the observer. The line is thus
observed to be broadened.

From our previous discussion, if v is the velocity of the molecules,

=120
[
cC—9v
and Ag = p LA
. 2v .
.. breadth of line, A; — A; = < A . . @)

The breadth of the line can be measured by a diffraction grating, and
as A and ¢ are known, the velocity v can be calculated. By the kinetic
theory of gases, the velocity v of the molecules is roughly the root-mean-
square velocity, or V/3RT, where T is the absolute temperature and R
is the gas constant per gram of the gas. Consequently T can be found.

‘Doppler Effect and Radio Waves

A radio wave is an electromagnetic wave, like light, and travels with
the same velocity, c, in free space of 3:0 X 105 km s—1. The Doppler
effect with radio waves can be utilised for finding the speed of aeroplanes
and satellites.

As an illustration, suppose an aircraft C sends out two radio beams
at a frequency of 101° Hz; one in a forward direction, and the other
in a backward direction, each beam being inclined downward at an angle
of 30° to the horizontal, Fig. 26.20. A Doppler effect is obtained when
the radio waves are scattered at the ground at A, B, and when the

o 0 v
30 c\_ /30

FiG. 26.20. Doppler effect and radio waves.
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returning waves to C are combined, a beat frequency equal to their
difference is measured. Suppose the beat frequency is 3 x 10* Hz.
If the velocity of the aircraft C is v, the velocity of radio waves is ¢
and the frequency of the emitted beams is f, the apparent frequency f*
of the waves reaching A is given by
’ c :
f____c-{—vcoso'f’ . . . . @)
where 6 is 30°. The frequency f; of the wave received back at C from A
is given by
v
L=y
where V" is the velocity of the wave relative to C and X’ is the wavelength
of the waves reaching C. Since ¥’ = ¢ — vcos §and X’ = c/f’,
¢ — vcos 8 ¢ — vcos 8 ..
N f_c—l-vcosef’ (i)
from (i). Similarly, the frequency f2 of the waves received back at C
from B is given by

¢+ vcos 6 .
c— vcos @

Jo= (iii)

4 cvcos 0
beat frequency at C = f;, — f; = F —vicosd S

Now ¢ =3 X 106km s~%, § = 30°, f; — f; =3 X 104 Hz, f= 101 Hz,
and 2 cos? 0 is negligible compared with c2.
3 104=4cv<:20s ] = 4vcos 8
c c
3 x 10% x 3 x 105
~ T4cos 30° x 107
= 0-26 km s~
=936 km h-! (approx.)
The speed of the aircraft relative to the ground is thus nearly 940 km h-!

S

EXAMPLES

1. Obtain the formula for the Doppler effect when the source is moving
with respect to a stationary observer. Give examples of the effect in sound and
light. A whistle giving out 500 Hz moves away from a stationary observer in
a direction towards and perpendicular to a flat wall with a velocity of 1-5ms—1.
How many beats per sec will be heard by the observer.? [Take the velocity of
sound as 336 m s~ and assume there is no wind.] (C.)

First part. See text.

Second part. The observer hears a note of apparent frequency f* from the
whistle directly, and a note of apparent frequency f* from the sound waves
reflected from the wall.

,_V
Now f =y
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where V is the velocity of sound in air relative to the observer and A’ is the
wavelength of the waves reaching the observer. Since V' =336 ms-land

v 336+ 15
500 |
s 336X 500
S = e = 4978 Hz

The note of apparent frequency f* is due to sound waves moving towards
the observer with a-velocity of 1-5 m s—?

\ fr— v _ 336
. XN T (336 — 1-5)/500
336 X 500
== —= ~2
3345 502-2 Hz

. beats per second = f” — f = 502:2 — 497-8 = 4-4

2. Two observers A and B are provided with sources of sound of frequency
500. A remains stationary and Bmoves away from him ‘at a velocity of
1-8m s—! How many beats per sec are observed by A and by B, the velocity
of sound being 330 m s—1? Explain the principles involved in the solution
of this problem. (L.) :

Beats observed by A. A hears a note of frequency 500 due to its own source
of sound. He also hears a note of apparent frequency f* due to the moving
source B. With the usual notation, |

f= v _ 330
XN (330 + 1-8)[500
since the velocity of sound, ¥, relative to A is 330 ms—* and the wavelength
X’ of the waves reaching him is (330 4~ 1-8)/500 m.
330 X 500

f= =473

beats observed by A = 500 — 497-29 = 2:71 Hz.

Beats observed by B. The abparent fiequency f’ of the sound from A is
given by . . '
, Vv
f=-
In this case V' = velocity of sound relative to B = 330 — 1:8 = 328-2ms—!
and the wavelength A’ of the waves reaching B is unaltered. Since A" =
330/500 m, it follows that '

, 3282 _ 3282X 500 .
= 330/500 330 = 49121

.’. beats heard by B = 500 — 497-27 = 2-73 Hz

EXERCISES 26

1. If the velocity of sound in air at 15°C is 342 metres per second calculate
the velocity at (a) 0°C, (b) 47°C. What is the velocity if the pressure of the
air changes from 76 cm to 75 cm mercury, the temperature remaining con-
stant at 15°C?
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2. Describe a determination (other than resonance) of the velocity of
sound in air. How is the velocity dependent upon atmospheric conditions?
Give Newton’s expression for the velocity of sound in a gas, and Laplace’s
correction. Hence calculate the velocity of sound in air at 27°C. (Density of
airat ST.P. = 129 kgm=3; Cp = 1:02kJ kg1 K-1; C, = 072 kJ kg-!
K-1) () -

3. Describe the factors on which the velocity of sound in a gas depends.
A man standing at one end of a closed corridor 57 m long blew a short blast
on a whistle. He found that the time from the blast to the sixth echo was two
seconds. If the temperature was 17°C, what was the velocity of sound at
0°C? (C.)

4. Describe an experiment to find the velocity of sound in air at room
temperature.

A ship at sea sends out simultaneously a wireless signal above the water
and a sound signal through the water, the temperature of the water being
4°C. These signals are received by two stations, 4 and B, 40 km apart, the
intervals between the arrival of the two signals being 164 s at 4 and 22 s at B.
Find the bearing from A of the ship relative to AB. The velocity of sound in
water at £° Cm s~1 = 1427 + 3-3¢. (N.)

5. Write down an expression for the speed of sound in an ideal gas. Give
a consistent set of units for the quantities involved.

Discuss the effect of changes of pressure and temperature on the speed of
sound in air.

Describe an experimental method for finding a reliable value for the speed
of sound in free air. (N.)

6. Describe an experiment to measure the velocity of sound in the open
air. What factors may affect the value obtained and in what way may they
do so?

It is noticed that a sharp tap made in front of a flight of stone steps gives
rise to a ringing sound. Explain this and, assuming that each step is 0-25 m
deep, estimate the frequency of the sound. (The velocity of sound may be
taken to be 340 m s-1.) (L.) ’

7. Explain why sounds are heard very clearly at great distances from the
source (a) on still mornings after a clear night, and (b) when the wind is
blowing from the source to the observer. (W.)

8. Describe one or two experiments to test each of the following state-
ments: (a) If two notes are recognised by ear to be of the same pitch their
sources are making the same number of vibrations per sec. (b)) The musical
interval between two notes is determined by the ratio of the frequencies of
the vibrating sources of the notes. (L.)

9. Give a brief account of any important and characteristic wave phenomena
which occur in sound. Why are sound waves in air regarded as longitudinal
and not transverse?

An observer looking due north sees the flash of a gun 4 seconds before he .
records the arrival of the sound. If the temperature is 20°C and the wind is
blowing from east to west with a velocity of 48 km per hour, calculate the
distance between the observer and the gun. The velocity of sound in air at
0°C is 330 m s-1. Why does the velocity of sound in air depend upon the
temperature but not upon the pressure? (N.)
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10. Explain upon what properties and conditions of a gas the velocity of .
sound through it depends. v

Describe, and explain in detail, a laboratory method of measuring the
velocity of sound in air. (L.)

Beats

11. Explain how beats are produced by two notes sounding together and
obtain an expression for the number of beats heard per second.

A whistle of frequency 1000 Hz is sounded on a car travelling towards a
cliff with a velocity of 18 ms-1, normal to the cliff. Find the apparent
frequency of the echo as heard by the car driver. Derive any relations used.
(Assume velocity of sound in air to be 330 ms—1.) (L.)

12. What is meant by (a) the amplitude, (b) the frequency of a vibration
in the atmosphere? What are the corresponding characteristics of the musical
sound associated with the vibration? How would you account for the differ-
ence in quality between two notes of the same pitch produced by two different
instruments, e.g., by a violin and by an organ pipe?

What are ‘beats’? Given a set of standard forks of frequencies 256, 264,
272, 280, and 288, and a tuning-fork whose frequency is known to be between
256 and 288, how would you determine its frequency to four significant
figures? (W.)

13. Explain the origin of the beats heard when two tuning-forks of slightly
different frequency are sounded together. Deduce the relation between the
frequency of the beats and the difference in frequency of the forks. How
would you determine which fork had the higher frequency?

A simple pendulum set up to swing in front of the ‘seconds’ pendulum
(T = 2 s) of a clock is seen to gain so that the two swing in phase at intervals
of 21 s, What is the time of swing of the simple pendulum? (L.)

Doppler’s Principle

14. An observer beside a railway line determines the speed of a train by
observing the change in frequency of the note of its whistle as it passes him.
Explain why a change of frequency occurs and derive the relation from which
the speed may be calculated. Describe an example of the same principle in
another branch of physics.

Find the lowest velocity that can be measured in this way, if the true
frequency of the whistle is 1000 Hz and the observer is unable to detect
departures from this frequency of less than 20 Hz. (Assume the velocity of
sound to be 340 m s-1.) (L.)

15. Explain what is meant by the Doppler effect in sound. Does an observer
hear the same pitch from a given source of sound irrespective of whether the
source approaches the stationary observer at a certain velocity or the observer
approaches the stationary source at the same velocity? Explain how you
arrived at your answer.

The light of the H (calcium) line of the spectrum is deviated through an
angle of 45° 12’ by a certain prism. When observed in the light of a distant
nebula, the deviation is 44° 15’. Calculate the velocity of the nebula in the
line of sight, taking the velocity of light in vacuo to be 3-00 X 108 m s-1
and the deviation to be inversely proportional to the wavelength of the light
over the range of values to be considered. (L.)

16. Explain in each case the change in the apparent frequency of a note
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brought about by the motion of (i) the source, (ii) the observer, relative to the
transmitting medium. )

Derive expressions for the ratio of the apparent to the real frequency in
the cases where (a) the source, (b) the observer, is at rest, while the other is
moving along the line joining them.

The locomotive of a train approaching a tunnel in a cliff face at 95 km.p.h.
is sounding a whistle of frequency 1000 Hz. What will be the apparent
frequency of the echo from the cliff face heard by the driver? What would be
the apparent frequency of the echo if the train were emerging from the tunnel
at the same speed? (Take the velocity of sound in air as 330 m s-1.) (L.)

17. (a) State the conditions necessary for ‘beats’ to be heard and derive an
expression for their frequency.
(b) A fixed source generates sound waves which travel with a speed of
- 330 m s 1. They are found by a distant stationary observer to have a frequency
of 500 Hz. What is the wavelength of the waves? From first principles find
(i) the wavelength of the waves in the direction of the observer, and (ii) the
frequency of the sound heard if (1) the source is moving towards the stationary
observer with a speed of 30 m s-1, (2) the observer is moving towards the
stationary source with a speed of 30 m s -1, (3) both source and observer move
with a speed of 30 m s -1 and approach one another. (V.)

18. What is the Doppler effect? Find an expression for it when the observer
is at rest and there is no wind.

A whistle is whirled in a circle of 100 cm radius and traverses the circular
path twice per second. An observer is situated outside the circle but in its
plane. What is the musical interval between the highest and lowest pitch
observed if the velocity of sound is 332 m s-1? (L.)

19. Explain why the frequency of a wave motion appears, to a stationary
obscrver, to change as the component of the velocity of the source along the
line joining the source and observer changes. Describe two illustrations of
this effect, one with sound and one with light.

A stationary observer is standing at a distance / from a straight railway
track and a train passes with uniform velocity v sounding a whistle with
frequency ng. Taking the velocity of sound as ¥, derive a formula giving the
observed frequency n as a function of the time. At which position of the train
will n = ny? Give a physical interpretation of the result. (C.)

Sound Intensity. Acoustics

20. Explain what is meant by (@) an intensity level in sound, (b) the state-
ment that two intensity levels differ by 5 decibels. What considerations have
determined the choice of a zero level in connection with the specification of
loudness?

A loudspeaker produces a sound intensity level of 8 decibels above a certain
reference level at a point P, 40 m from it. Find (a) the intensity level at a
point 30 m from the loudspeaker, (b) the intensity level at P if the electrical
power to the loudspeaker is halved. (L.)

21. Distinguish between the intensity and loudness of a sound. In what
units would the intensity be measured? Define in each instance a unit em-
ployed to compare (a) the intensity and () the loudness of two sounds.

A source of sound is situated midway, between an observer and a flat wall.
If the absorption coefficient of the wall is 0-25 find the ratio of the intensities
of sound heard by the observer directly and by reflexion. Give the answer in
decibels. (L.)
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22. Describe a method for the accurate measurement of the velocity of
sound in free air.

Indicate the factors which influence the velocity and how they are allowed
for or eliminated in the experiment you describe.

At a point 20 m from a small source of sound the intensity is 0-5 microwatt
cm~2. Find a valué for the rate of emission of sound energy from the source,
and state the assumptions you make in your calculation. (N.)

23. Distinguish between intensity and intensity level of a sound.

The time taken for a sound to decay to one-millionth of its previous
intensity after the source has been cut off is called the reverberation time.
For a pure tone which gives an intensity level of 83 decibels in an empty
lecture theatre the reverberation time was found to be 3-8 seconds. Calculate
the sound intensity 7-6 seconds after the note was switched off. (Assume that
the reference zero of intensity was 10-12 watt m~2.)

Explain what was meant by a listener who stated that the note had a loud-
ness of 70 phons.

Discuss how the acoustic properties of this lecture theatre might be
improved. (N.)

24. (a) Discuss the relation between the intensity level and the loudness of
a sound. Define suitable units in which each may be expressed.

(b) Give an account of the effect on the acoustics of a concert hall of such
factors as: the design and material of the walls: the size of the audience; the
frequency of the note. (L.)

25. A hall is 25 m long, 8 m wide and has walls 8 m high. The ceiling is
a barrel vault of radius 5 m and the ends of the hall are plane. The floor is
wood block and the walls are hard plaster, wood panelling and glass. The
ceiling is also of hard plaster.

Indicate and give reasons for three defects of this hall as an auditorium and
show how you would attempt to correct them.

Diagrams are essential in the answer to this question. (N.)



