Preface to Second Edition

In this edition I have added an introduction to Atomic Structure,
which covers the Advanced level syllabus on this topic. I am particu-
larly indebted to Mr. J. Yarwood, M.Sc., F.Inst.P., head of the physics
and mathematics department, Regent Street Polytechnic, London, for
reading this section and for valuable advice, and to Prof. L. Pincherle,
Bedford College, London University, for his kind assistance in parts of
the text.

I am also indebted to G. Ullyott, Charterhouse School and L. G.
Mead, Wellington School, Somerset, for their helpful comments on
dynamics dnd optics respectively.
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PART ONE

Mechanics and Properties of Matter




chapter one

Dynamics

Motion in a Straight Line. Velocity

IF a car travels steadily in a constant direction and covers a distance s
in a time ¢, then its velocity in that direction = s/t. If the car does not
travel steadily, then s/t is its average velocity, and

distance s = average velocity x t.

We are here concerned with motion in a constant direction. The term
‘displacement’ is given to the distance moved in a constant direction,
for example, from L to C in Fig. 1.1 (i). Velocity may therefore be
defined as the rate of change of displacement.

Velocity can be expressed in centimetres per second (cm/s or cm s~ 1)
or metres per second (m/s or ms~?!) or kilometres per hour (km/h or
kmh™!). By calculations, 36 kmh~! = 10 ms™'. It should be noted
that complete information is provided for a velocity by stating its
direction in addition to its magnitude, as explained shortly.

If an object moving in a straight line travels equal distances in equal
times, no matter how small these distances may be, the object is said
to be moving with uniform velocity. The velocity of a falling stone
increases continuously, and so is a non-uniform velocity.

If, at any point of a journey, As is the small change in displacement in
a small time At, the velocity v is given by v = As/At. In the limit, using
calculus notation, ds

v = E.
Vectors

Displacement and velocity are examples of a class of quantities called
vectors which have both magnitude and direction. They may therefore
be represented to scale by a line drawn in a particular direction. Thus

c | | D A

Velocity Acceleration ¢g

Displacement
(i) o —Lt——————=-
(iti)
L FiGg 1.1 Vectors o

Cambridge is 80 km from London in a direction 20° E. of N. We
can therefore represent the displacement between the cities in magnitude
1
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and direction by a straight line LC 4 cm long 20° E. of N., where
1. cm represents 20 km, Fig. 1.1 (i). Similarly, we can represent the
velocity u of a ball initially thrown at an angle of 30° to the horizontal
by a straight line OD drawn to scale in the direction of the velocity u,
the arrow on the line showing the direction, Fig. 1.1 (ii). The acceleration
due to gravity, g, is always represented by a straight line AO to scale
drawn vertically downwards, since this is the direction of the accelera-
tion, Fig. 1.1 (iii). We shall see later that ‘force’ and ‘momentum’ are
other examples of vectors.

Speed and Velocity

A car moving along a winding road or a circular track at 80 km h~?
is said to have a speed of 80 km h™!. ‘Speed’ is a quantity which has no
direction but only magnitude, like ‘mass’ or ‘density’ or ‘temperature’.
These quantities are called scalars.

The distinction between speed and velocity can be made clear by
reference to a car moving round a circular track at 80 km h™! say. Fig.
1.2. At every point on the track the speed is the same—it is 80 km h™1.

Speed constant
Velocity different

FiG. 1.2. Velocity and speed

- At every point, however, the velocity is different. At A, B or C, for
example, the velocity is in the direction of the particular tangent, AP,
BQ or CR, so that even though the magnitudes are the same, the three
velocities are all different because they point in different directions.
Generally, vector quantities can be represented by a line drawn in the
direction of the vector and whose length represents its magnitude.

Distance-Time Curve

When the displacement, or distance, s of a moving car from some
fixed point is plotted against the time t, a distance-time (s—t) curve of
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the motion is obtained. The velocity of the car at any instant is given
by the change in distance per second at that instant. At E, for example,
if the change in distance s is As and this change is made in a- time At,
. As
velocity at E = Ar
In the limit, then, when At approaches zero, the velocity at E becomes
equal to the gradient of the tangent to the curve at E. Using calculus
notation, As/At then becomes equal to ds/dt (p. 1).

s
A v=0

As{ As Non-uniform Uniform

velocity velocity

""" /

Fi1G. 1.3 Displacement (s)-time (#) curves

If the distance-time curve is a straight line CD, the gradient is
constant at all points; it therefore follows that the car is moving with .
a uniform velocity, Fig. 1.3. If the distance-time curve is a curve CAB,
the gradient varies at different points. The car then moves with non-
uniform velocity. We may deduce that the velocity is zero at the instant
corresponding to A, since the gradient at A to the curve CAB is zero:

When a ball is thrown upwards, the height s reached at any instant
t is given by s = ut—1igt?, where u is the initial velocity and g is the
constant equal to the acceleration due to gravity (p. 8). The graph
of s against ¢ is represented by the parabolic curve CXY in Fig. 1.3; the
gradient at X is zero, illustrating that the velocity of the ball at its
maximum height is zero:

Velocity-Time Cyrves

When the velocity of a moving train is plotted against the time, a
‘velocity-time (v-t) curve’ is obtained. Useful information can be de-
duced from this curve, as we shall see shortly. If the velocity is uniform,
the velocity-time graph is a straight line parallel to the time-axis, as
shown by line (1) in Fig. 1.4. If the train accelerates uniformly from rest,
the velocity-time graph is a straight line, line (2), inclined to the time-
axis. If the acceleration is-not uniform, the velocity-time graph is curved.
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(2)

(3)

0 XY B

FiG. 1.4 Velocity (v)-time (#) curves

In Fig. 1.4, the velocity-time graph OAB represents the velocity of a
train starting from rest which reaches a maximum velocity at A, and
then comes to rest at the time corresponding to B; the acceleration and
retardation are both not uniform in this case.

Acceleration is the ‘rate of change of velocity’, i.e. the change of
velocity per second. The acceleration of the train at any instant is given
by the gradient to the velocity-time graph at that instant, as at E. At the
peak point A of the curve OAB the gradient is zero, i.e., the acceleration
is then zero. At any point, such as G, between A, B the gradient to the
curve is negative, i.e., the train undergoes retardation.

The gradient to the curve at any point such as E is given by:

velocity change _ Av
time T At

where Av represents a small change in v in a small time At. In the limit,
the ratio Av/At becomes dv/dt, using calculus notation.

Area Between Velocity-Time Graph and Time-Axis

Consider again the velocity-time graph OAB, and suppose the
velocity increases in a very small time-interval XY from a value rep-
resented by XC to a value represented by YD, Fig. 1.4. Since the small
distance travelled = average velocity x time XY, the distance travelled
is represented by the area between the curve CD and the time-axis,
shown shaded in Fig. 1.4. By considering every small time-interval
between OB in the same way, it follows that the total distance travelled
by the train in the time OB is given by the area between the velocity-time
graph and the time-axis. This result applies to any velocity-time graph,
whatever its shape.

Fig. 1.5 illustrates the velocity-time graph AB of an object moving
with uniform acceleration a from an initial velocity u. From above,
the distance s travelled in a time t or OC is equivalent to the area
OABC. The area OADC = u.t. The area of the triangle ABD =
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0

._;C t

Ole——c——=ip

- t

Fi1G. 1.5 Uniform acceleration

1AD.BD = it.BD. Now BD = the increase in velocity in a time ¢
= at. Hence area of triangle ABD = 4t . at = 4ar®

.. total area OABC = s = ut +3at>.

This result is also deduced on p. 6.

Acceleration

The acceleration of a moving object at an instant is the rate of
change of its velocity at that instant. In the case of a train accelerating
steadily from 36 kmh™! (10 ms~!) to 54 kmh~! (15 ms™!) in 10
second, the uniform acceleration

= (54—36) kmh~!+10 seconds = 1-8 km h™* per second,
or
(15—10) m s~ !+ 10 seconds = 0-5 m s~ ! per second.
Since the time element (second) is repeated twice in the latter case, the
acceleration is usually given as 0-5 m s~ 2. Another unit of acceleration

is ‘cms~?’. In terms of the calculus, the acceleration a of a moving
object is given by

_dv
dt
where dv/dt is the velocity change per second.

Distance Travelled with Uniform Acceleration. Equations of Motion

If the velocity changes by equal amounts in equal times, no matter
how small the time-intervals may be, the acceleration is said to be
uniform. Suppose that the velocity of an object moving in a straight

a
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line with uniform acceleration a increases from a value u to a value vin_
a time ¢. Then, from the definition of acceleration,

_v—u

t
from which v=u+at . . . . (03

’

Suppose an object with a velocity u accelerates with a uniform
acceleration a for a time ¢ and attains a velocity v. The distance s
travelled by the object in the time ¢ is given by

s = average velocity x ¢
= Ju+ov)xt
But v=u+at
s =Hu+u+ant
C. s =ut+iat? | . . . . Q
~ If we eliminate ¢ by substituting ¢ = (v—u)/a from (1) in (2), we obtain,
- on simplifying,
‘ vZi=u?+42as . .. N €))
Equations (1), (2), (3) are the equations of motion of an object moving
in a straight line with uniform acceleration. When an object undergoes

a uniform retardation, for example when brakes are applied to a car,
a has a negative value.

EXAMPLES

1. A car moving with a velocity of 54 km h™! accelerates uniformly at the rate
of 2 ms™2, Calculate the distance travelled from the place where acceleration
began to that where the velocity reaches 72 km h™1, and the time taken to cover

_ this distance.

() S4kmh ' =15ms !, 72kmh~! = 20 ms~!, acceleration a = 2 ms~2

Using v? = u?+2as,
5 202 =15%242x2xs
.. 20%-15* .5
.8 = 2—)(2—— 434 m,
(ii) Using v =u+at
. 20=15+2t
=20=15_ 55,

2




DYNAMICS o 7

2. A train travelling at 72 km h™! undergoes a uniform retardation of 2 m s2

when brakes are applied. Find the time taken to come to rest and the distance
travelled from the place where the brakes were applied.

@ 72kmh ' =20ms ', anda= —2ms %, v=0.

Using v=u+at
.0=20-2¢
S.t=10s

(ii) The distance, s, = ut+3at>.
—20x10—4x2x10? = 100 m.

Motion Under Gravity

When an object falls to the ground under the action of gravity,
experiment shows that the object has a constant or uniform acceleration
of about 980 cm s~ 2, while it is falling (see p. 49). In SI units this is
9-8 ms~2 or 10 ms~2 approximately. The numerical value of this
acceleration is usually denoted by the symbol g. Suppose that an object
is dropped from a height of 20 m above the ground. Then the initial
velocity u = 0, and the acceleration a = g = 10 m s~ (approx).
Substituting in s = ut +1at?, the distance fallen s in metres is calculated
from

s = 3gt? = 5¢%.
When the object reaches the ground, s = 20 m.
.20=5%0rt=2s

Thus the object takes 2 seconds to reach the ground.

If a cricket-ball is thrown vertically upwards, it slows down owing to
the attraction of the earth. The ball is thus retarded. The magnitude
of the retardation is 98 m s~ 2, or g. Mathematically, a retardation
can be regarded as a negative acceleration in the direction along which
the object is moving; and hence a = —9-8 m s~ in this case.

Suppose the ball was thrown straight up with an initial velocity, u,
of 30 ms~1. The time taken to reach the top of its motion can be
obtained from the equation v = u+at. The velocity, v, at the top is

zero; and since u = 30 m and a = —9-8 or 10 m s~ 2 (approx), we have
0 = 30—-10¢.
C =30
= 0= 3s.

The highest distance reached is thus given by
s = ut+iat?
=30x3-5x32=45m.

If a boy is running along the deck of a ship in a direction OA, and the

Resultant. Components
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ship is moving in a different direction OB, the boy will move relatively
to the sea along a direction OC, between OA and OB, Fig. 1.6 (i). Now
in one second the boat moves from O to B, where OB represents the
velocity of the boat, a vector quantity, in magnitude and direction.
The boy moves from O to A in the same time, where OA represents the
velocity of the boy in magnitude and direction. Thus in one second the
net effect relative to the sea is that the boy moves from O to C. It can
now be seen that if lines OA, OB are drawn to represent in magnitude
and direction the respective velocities of the boy and the ship, the
magnitude and direction of the resultant velocity of the boy is repre-
sented by the diagonal OC of the completed parallelogram having OA,
OB as two of its sides; OACB is known as a parallelogram of velocities.
Conversely, a velocity represented completely by OC can be regarded
as having an ‘effective part’, or component represented by OA, and
another component represented by OB.

8 c
4 7 Y
o), ' R
F
Component
. . 90° ' f F
(@ (ii) Q) /o p
0 ~A o X

FI1G. 1.6. Resultant and component.

In practice, we often require to find the component of a vector
quantity in a certain direction. Suppose OR represents the vector F,
and OX is the direction, Fig. 1.6 (ii). If we complete the parallelogram
OQRP by drawing a perpendicular RP from R to OX, and a per-
pendicular RQ from R to OY, where OY is perpendicular to OX, we
can see that OP, OQ represent the components of F along OX, OY
respectively. Now the component OQ has no effect in a perpendicular
direction; consequently OP represents the total effect of F along the
direction OX. OP is called the ‘resolved component’ in this direction.
If 6 is the angle ROX, then, since triangle OPR has a right angle at P,

OP = ORcosf = Fcos 0§ . . @

Components of g

The acceleration due to gravity, g, acts vertically downwards. In
free fall, an object has an acceleration g. An object sliding freely down
an inclined plane, however, has an acceleration due to gravity equal
to the component of g down the plane. If it is inclined at 60° to the
vertical, the acceleration down the plane is then g cos 60° or 9-8 cos 60°
m s~ 2, whichis 49 ms~2

Consider an object O thrown forward from the top of a cliff OA
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with a horizontal velocity u of 15 m s~ 1. Fig. 1.7. Since u is horizontal,
it has no component in a vertical direction. Similarly, since g acts
vertically, it has no component in a horizontal direction.

0 u=15ms™

X —e=y

y |

| u=15m s

Z

/////

N
A
FiG. 1.7 Motion under gravity

We may thus treat vertical and horizontal motion independently.
Consider the vertical motion from O. If OA is 20 m, the ball has an
initial vertical velocity of zero and a vertical acceleration of g, which is
9-8 ms~2 (10 m s~ 2 approximately). Thus, from s = ut+3at?, the time
t to reach the bottom of the cliff is given, using g = 10 ms~2, by

20=1%.10.¢> = 5¢%, ort = 2s.
So far as the horizontal motion is concerned, the ball continues to

move forward with a constant velocity of 15 m s~ ! since g has no com-
ponent horizontally. In 2 seconds, therefore,

horizontal distance AB = distance from cliff = 15x2 = 30 m.

Generally, in a time ¢ the ball falls a vertical distance, y say, from O
given by y = 4gt2. In the same time the ball travels a horizontal distance,
x say, from O given by x = ut, where u is the velocity of 15ms™'. If tis
eliminated by using ¢ = x/u in y = 1gt?, we obtain y = gx?/2u. This is
the equation of a parabola. It is the path OB in Fig. 1.7.

-Addition of Vectors

Suppose a ship is travelling due east at 30 kmh™' and a boy runs
‘across the deck in a north-west direction at 6 km h™!, Fig. 1.8 (i). We

1 C

6 km.h. my‘?\i
~1
30 km.l_'l. V\ o - "
(i) (ii)

FiG. 1.8 Addition of vectors
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can find the velocity and direction of the boy relative to the sea by
adding the two velocities. Since velocity is a vector quantity, we draw
a line OA to represent 30 km h ™! in magnitude and direction, and then,
from the end of A, draw a line AC to represent 6 km h™! in magnitude .
and direction, Fig. 1.8 (ii). The sum, or resultant, of the velocities is now
represented by the line OC in magnitude and direction, because a
distance moved in one second by the ship (represented by OA) together
with a distance moved in one second by the boy (represented by AC)
is equivalent to a movement of the boy from O to C relative to the sea.

Fi1G. 1.9 Subtraction of velocities

In other words, the difference between the vectors B, 6 in Fig. 1.9 (i)
is the sum of the vectors P and (—Q). Now (—3) is a vector drawn
exactly equal and opposite to the vector Q. We therefore draw ab to
represent—ﬁ completely, and then draw bc to represent ( —Q) completely,
Fig. 19 (ii). Then_ﬁ+(——3) = the vector represented by ac =_P—%

Relative Velocity and Relative Acceleration

If a car A travelling at 50 km h™! is moving in the same direction as
another car B travelling at 60 km h ™!, the relative velocity of Bto A =
60— 50 = 10 km h™'. If, however, the cars are travelling in opposite
directions, the relative velocity of Bto A = 60—(—50) = 110km h~1.

‘Suppose that a car X is travelling with a velocity v along a road 30°
east of north, and a car Y is travelling with a velocity u along a road
due east, Fig. 1.10 (i). Since ‘velocity’ has direction as well as magnitude,
ie, ‘velocity’ is a vector quantity (p. 1), we cannot subtract u and v
numerically to find the relative velocity. We must adopt a method
which takes into account the direction as well as the magnitude of the
velocities, i.e., a vector subtraction is required.

| v B u A o} g D
| X
I
lyro Relative v Relative v
130 velocity velocity
1

L 3 (o} E

(i) (ii) (iii)

FiG. 1.10. Relative velocity.'
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The velocity of X relative to Y =B—u =7+(—4). Suppose OA
represents the velocity, v, of X in magnitude and direction, Fig. 1.10 (ii).
Since Y is travelling due east, a velocity AB numerically equal to u
but in the due west direction represents the vector (—). The vector
sum of OA and AB is OB from p. 0, which therefore represents in
magnitude and direction the velocity of X relative to Y. By drawing an
accurate diagram of the two velocities, OB can be found.

The velocity of Y relative to X = 4@ —¢ =4 +(—1), and can be found
by a similar method. In this case, OD represents the velocity, u, of Y
in magnitude and direction, while DE represents the vector (=),
which it is drawn numerically equal to v but in the opposite direction,
Fig. 1.10 (iii). The vector sum of OD and DE is OE, which therefore
represents the velocity of Y relative to X in magnitude and direction.

When two objects P, Q are each accelerating, the acceleration of P
relative to Q = acceleration of P —acceleration of Q. Since ‘accelera-
tion’ is a vector quantity, the relative acceleration must be found by
vector subtraction, as for the case of relative velocity.

EXAMPLE

Explain the difference between a scalar and a vector quantity.

What is meant by the relative velocity of one body with respect to another?
Two ships are 10 km apart on a line running S. to N. The one farther north
is steaming W. at 20 km h~'. The other is steaming N. at 20 kmh™'. What is
their distance of closest approach and how long do they take to reach it? (C.)

Suppose the two ships are at X, Y, moving with velocities u, v respectively,
each 20 kmh™'Fig 1.11 (i). The velocity of Y relative to X = 7—% =7+ (—u).
We therefore draw OA to represent T (20) and add to it AB, which represents
(=), Fig. 1.11 (ii). The relative velocity is then represented by OB.

Relative
velocity

(i) (ii) ' (ifi)
Fi1G. 1.11 Examplg

Since OAB is a right-angled triangle,
OB = ,/JOAZ+AB? = /20 +20% = 2828 = 283 km h~ @

AB 20

Also, tanf = 6& = 5‘6

=1,ie, 0 =45° . . . . (i)
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Thus the ship Y will move along a direction QR relative to the ship X, where -
QR is at 45° to PQ, the north-south direction, Fig. 1.11(ii). If PQ = 10 km,
the distance of closest approach is PN, where PN is the perpendicular from
P to QR.

: .. PN = PQsin 45° = 10 sin 45° = 707 km. -

The distance QN = 10 cos 45° = 7407 km. Since, from (i), the relative velocity

is 28-28 km h ™1, it follows that

time to.reach N = ——— = { hour.

707 -
28-28

LAWS OF MOTION. FORCE AND MOMENTUM

Newton’s Laws of Motion

In 1686 SR Isaac NEWTON published a work caﬂed Principia, in
which he expounded the Laws of Mechanics. He formulated in the
book three ‘laws of motion’:

Law L Every body continues in its state of rest or uniform motion in a
straight line, unless impressed forces act on it.

Law IL. The change of momentum per unit time is proportional to the
impressed force, and takes place in the direction of the straight line along
which the force acts.

Law IIL. Action and reaction are always equal and opposite.

These laws cannot be proved in a formal way; we believe they are
correct because all the theoretical results obtained by assuming their
truth agree with the experimental observations, as for example in
astronomy (p. 58).

Inertia. Mass

Newton’s first law expresses the idea of inertia. The inertia of a body
is its reluctance to start moving, and its reluctance to stop once it has
begun moving. Thus an object at rest begins to move only when it is
pushed or pulled, i.e., when a force acts on it: An object O moving in a

Velocity change
J

Velocityi o
change

(i) (i)

FiG. 1.12 Velocity changes
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straight line with constant velocity will change its direction or move
faster only if a new force acts on it. Fig. 1.12 (i). This can be demon-
strated by a puck moving on a cushion of gas on a smooth level sheet
of glass. As the puck slides-over the glass, photographs taken at succes-
sive equal times by a stroboscopic method show that the motion is
practically that of uniform velocity. Passengers in a bus or car are
jerked forward when the vehicle stops suddenly. They continue in their
state of motion until brought to rest by friction or collision. The use of
safety belts reduces the shock.

Fig. 1.12 (ii) illustrates a velocity change when an object O is whirled
at constant speed by a string. This time the magnitude of the velocity
v is constant but its direction changes.

‘Mass’ is a measure of the inertia of a body. If an object changes its
direction or its velocity slightly when a large force acts on it, its inertial
mass is high. The mass of an object is constant all over the world;
it is the same on the earth as on the moon. Mass is measured in kilo-
grammes (kg) or grammes (g) by means of a chemical balance, where
it is compared with standard masses based on the International
Prototype Kilogramme (see also p. 14).

Force. The newton

When an object X is moving it is said to have an amount of momentum
given, by definition, by

momentum = mass of X x velocity . . 1)

Thus an object of mass 20 kg moving with a velocity of 10ms™* hasa
momentum of 200 kg ms™!. If another object collides with X its
velocity alters, and thus the momentum of X alters. From Newton’s
second law, a force acts on X which is equal to the change in momentum
per second.

Thus if F is the magnitude of a force acting on a constant mass m,

F oc m x change of velocity per second
.. F oc ma,
where a is the acceleration produced by the force, by definition of a.

S F=kma . . . . 2
where k is a constant.

With SI units, the newton (N) is the unit of force. It is defined as
the force which gives a mass of 1 kilogramme an acceleration of:
1 metre s~ 2. Substituting F= 1IN, m=1 kg and a=1 ms™2 in
the expression for F in (i), we obtain k = 1. Hence, with units as stated,
k=1.

. F =ma,

which is a standard equation in dynamics. Thus if a mass of 200 g is
acted upon by a force F which produces an acceleration a of 4 m s™2,
then, since m = 200 g = 0-2 kg,

F = ma = 0-2(kg) x4m s~ %) = 0-8 N.




14 ADVANCED LEVEL PHYSICS

C.g.s. units of force

The dyne is the unit of force in the centimetre-gramme-second
system; it is defined as the force acting on a mass of 1 gramme which
gives it an acceleration of 1 cm s~ 2. The equation F = ma also applies
when m is in grammes, a is in cm s 2, and F is in dynes. Thus if a force
of 10000 dynes acts on a mass of 200 g, the acceleration « is given by

F =10000 = 200xa, or a=S0cms™ 2

Suppose m =1 kg =1000 g, a =1 m s~? = 100 cm s~ % Then,
the force F is given by '

F = ma = 1000 x 100 dynes = 10° dynes.

But the force acting on a mass of 1 kg which gives it an acceleration of
1 m s~ 2 is the newton, N. Hence

1 N = 10° dynes

Weight. Relation between newton, kgf and dyne, gf

The weight of an object is defined as the force acting on it due to
gravity; the weight of an object can hence be measured by attaching
it to a spring-balance and noting the extension, as the latter is propor-
tional to the force acting on it (p. 50). :

Suppose the weight of an object of mass m is denoted by W. If the
object is released so that it falls to the ground, its acceleration is g.
Now F = ma. Consequently the force acting on it, i.e., its weight, is
given by

W = mg.

If the mass is 1 kg, then, since g = 9-8 m s~ 2, the weight W = 1 x 98 =
9-8 N (newton). The force due to gravity on a mass of 1 kg where g has
the value 9-80665 m s~ 2 is called a 1 kilogramme force or 1 kgf (this is
roughly equal to 1 kilogramme weight or 1 kg wt, which depends on
the value of g and thus varies from place to place). Hence it follows that

1 kgf = 9-8 N = 10 N approximately.

A weight of 5 kgf is thus about 50 N. Further, 1 N = {5 kgf approx =
100 gf. The weight of an apple is about 1 newton.

. The weight of a mass of 1 gramme is called gramme-force (1 gf); it
.was formerly called ‘1 gramme wt’. From F = ma, it follows that

1 gf = 1x980 = 980 dynes.

since g = 980 cm s~ 2 (approx).

- The reader should note carefully the difference between the ‘kilo-
gramme’ and the ‘kilogramme force’; the former is a mass and is

therefore constant all over the universe, whereas the kilogramme force

is a force whose magnitude depends on the value of g. The acceleration

due to gravity, g, depends on the distance of the place considered from

the centre of the earth; it is slightly greater at the poles than at the
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equator, since the earth is not perfectly spherical (see p. 41). It there-
fore follows that the weight of an object differs in different parts of the
world. On the moon, which is smaller than the earth and has a smaller -
density, an object would weigh about one-sixth of its weight on the
earth.

The relation F = ma can be verified by using a ticker-tape and
timer to measure the acceleration of a' moving trolley. Details are
given in a more basic text, such as Fundamentals of Physics (Chatto and
Windus) by the author.

The following examples. illustrate the application of F = ma. It
should be carefully noted that (i) F represents the resultant force on the
object of mass m, (ii) F must be expressed in the appropriate units of a
‘force’ and m in the corresponding units of a ‘mass’.

EXAMPLES
1. A force of 20 kgf pulls a sledge of mass 50 kg and overcomes a constant
frictional force of 4 kgf. What is the acceleration of the sledge?
Resultant force, F, = 20 kgf—4 kgf = 16 kgf.
To change this to units of newtons, use 1 kgf = 9-8 N = 10 N approx.
.. 16 kgf = 160 N approx. ‘

From F = ma,
.. 160 = 50xa
S.a=32ms" 2

2. An object of mass 2-00 kg is attached to the hook of a spring-balance, and
the latter is suspended vertically from the roof of a lift. What is the reading on the
spring-balance when the lift is (i) ascending with an acceleration of 20 cm's 2,
(ii) descending with an acceleration of 10 cm s~2, (iii) ascending with a uniform
velocity of 15 cms™ 1,

Suppose T is the tension (force) in the spring-balance in kgf.

(i) The object is acted upon two forces: (a) The tension T kgf in the spring-
balance, which acts upwards, (b) its weight, 2 kgf, which acts downwards. Since
the object moves upwards, T is greater than 2 kgf. Hence the net force, F, acting
on the object = (T'—2) kgf = (T—2) x 10 N, approx. Now

v F = ma,
where a is the acceleration in m s~ 2.

S (T-2)x10=2%xa=2x02
. T = 204 kgf . . . . 0))

(i) When the lift descends with an acceleration of 10 cms™2 or 0-1 ms ™2, the
weight, 2 kgf, is now greater than T; kgf, the tension in the spring-balance.

.". resultant force = (2— T,) kgf = (2— T;) x 10 N approx.
L F=Q-T)x10 =ma=2x01
ST, =2-002 = 1-98 kgf.

(ii) When the lift moves with constant velocity, the acceleration is zero. In
this case the reading on the spring-balance is exactly equal to the weight, 2 kgf.
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Linear Momentum
Newton defined the force acting on an object as the rate of change
of its momentum, the momentum being the product of its mass and
velocity (p.13). Momentum-is thus a vector quantity. Suppose that the
mass of an object is m, its initial velocity is u, and its final velocity due

to a force F acting on it for a time ¢ is v. Then
change of momentum = mv—mu,
) my—mu
t
. Ft = mv—mu = momentum change . . (1)
The quantity Ft (force x time) is known as the impulse of the force on
the object, and from (1) it follows that the units of momentum are the
same as those of Pt, ie., newton second (N s). From ‘mass x velocity’,
alternative units are ‘kgms™ "’

and hence F =

Force and momentum change

A person of mass 50 kg who is jumping from a height of 5 metres
will land on the ground with a velocity = /2gh = /2x10x 5
= 10 m s~ !, assuming g = 980 cm s~ 2 = 10 m s~ ? approx. If he does
not flex his knees on landing, he will be brought to rest very quickly, say
in {5th second. The force F acting is then given by

momentum change
time

1
— 5010 _ 5000 N = 500 kef (approx).

10
This is a force of about 10 times the person’s weight and this large
force has a severe effect on the body.

Suppose, however, that the person flexes his knees and is brought to
rest much more slowly on landing, say in 1 second. Then, from above,
the force F now acting is 10 times less than before, or 50 kgf (approx).
Consequently, much less damage is done to the person on landing.

T

Initial f

momentum mu |,

—PD T

x

Final +—e |5

momentum -mu |7

"ﬂ\-Sand :

+ §}—Horizontal momentum = O ‘-|
Cd R -
% Final momentum,, . Belt ~ wallf
— (@) (@) O—— [

5cm s~

(i) . (i)

FiG. 1.13 Linear momentum
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Suppose sand is allowed to fall vertically at a steady rate of 100 gs™?

on to a horizontal conveyor belt moving at a steady velocity of 5cm s ™.
Fig. 1.13 (i). The initial horizontal velocity of the sand is zero. The

final horizontal velocity is 5 cm s~ !. Now
mass = 100 g = 0-1 kg, velocity = 5cms™! = 5x 1072 ms™?!
.. momentum change per second = 0-1 x5x 1072 = 5x 10~ 3 newton
= force on belt

Observe that this is a case where the mass changes with time and the
velocity gained is constant. In terms. of the calculus, the force is the
rate of change of momentum mw, which is vxdm/dt, and dm/dt is
100 g s~ ! in this numerical example.

Consider a molecule of mass m in a gas, which strikes the wall of
a vessel repeatedly with a velocity u and rebounds with a velocity —u.
Fig. 1.13 (ii). Since momentum is a vector quantity, the momentum
change = final momentum — initial momentum = mu—(—mu) = 2mu.
If the containing vessel is a cube of side I, the molecule repeatedly
takes a time 2l/u to make an impact with the same side.

.". average force on wall due to molecule

__ momentum change

time
_ 2mu _ mu’
T 2w 1

The total gas pressure is the average force per unit area on.the walls )
of the container due to all the numerous gas molecules.

EXAMPLES

1. A hose ejects water at a speed of 20 cm s~ ! through a hole of area 100 cm?.
If the water strikes a wall normally, calculate the force on the wall in newton,
assuming the velocity of the water normal to the wall is zero after collision.

The volume of water per second striking the wall = 100 x 20 = 2000 cm3.
.". mass per second striking wall = 2000gs™! = 2kgs™ 1.
Velocity change of water on striking wall = 20—0 = 20 cms~! = 02 ms™ L.
.. momentum change per second = 2 (kg s~ !)x 02 (ms~!) = 0-4 newton.
2. Sand drops vertically at the rate of 2 kg s™* on to a conveyor belt moving
horizontally with a velocity of 0-1 m s™*. Calculate (i) the extra power needed to

keep the belt moving, (i) the rate of change of kinetic energy of the sand. Why
is the power twice as great as the rate of change of kinetic energy?

(i) Force required to keep belt moving = rate of increase of horizontal
momentum of sand = mass per second (dm/dt) x velocity change = 2x0-1 =
0-2 newton.

.. power = work done per second = force x rate of displacement
= force x velocity = 0-2 x 0-1 = 0-02 watt (p. 25).
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(i) Kinetic energy of sand = {muv?.

. rate of change of energy = v x dd—':', since v is constant,

=1x01?x2 = 001 watt.

Thus the power supplied is twice as great as the rate of change of kinetic
energy. The extra power is due to the fact that the sand does not immediately
assume the velocity of the belt, so that the belt at first moves relative to the sand.
The extra power is needed to overcome the friction between the sand and belt.

Conservation of Linear Momentum

We now consider what happens to the linear momentum of objects
which collide with each other.
Experimentally, this can be investigated by several methods:

1. Trolleys in collision, with ticker-tapes attached to measure velocities.

2. Linear Air-track, using perspex models in collision and stroboscopic
photography for measuring velocities.

| I 1 |
-1 -1
A 6159 360cm s IAO 6159 B 620g 180cm s
| o

o

Before collision After collision

FiG. 1.14 Linear momentum experiment

As an illustration of the experimental results, the following measure-
ments were taken in trolley collisions (Fig. 1. 14)

Before collision.

Mass of trolley A = 615 g; initial velocity = 360 cm s~ .

After collision.

A and B coalesced and both moved with velocity of 180 cm s ™.
Thus the total linear momentum of A and B before collision =
0615 (kg)x36 (ms !)+0=220 kgms~' (approx). The total
momentum of A and B after collision = 1-235x 1-8 = 220 kgms™!
(approx).

Within the limits of experimental accuracy, it follows that the total
moment of A and B before collision = the total momentum after collision.
Similar results are obtained if A and B are moving with different speeds
after collision, or in opposite directions before collision.

Principle of Conservation of Linear Momentum

These experimental results can be shown to follow from Newton’s
second and third laws of motion (p. 12).
Suppose that a moving object A, of mass m, and velocity u,, collides
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with another object B, of mass m, and velocity u,, moving in the same"

direction, Fig. 1.15. By Newton’s m m,

law of action and reaction, the force

F exerted by ‘A on B is equal and @—%
opposite to that exerted by B on A. ! 2
Moreover, the time ¢ during which FiG. 1.15

the force acted on B is equal to the Conservation of linear momentum
time during which the force of reaction acted on A. Thus the magnitude
of the impulse, Ft, on B is equal and opposite to the magnitude of the
impulse on A. From equation. (1), p. 16, the impulse is equal to the
change of momentum: It therefore follows that the change in the total
momentum of the two objects is zero, i.c., the total momentum of the
two objects is constant although a collision had occurred. Thus if A
moves with a reduced velocity v, after collision, and B then moves
with an increased velocity v,

mlul +m2u2 = mlvl +m202.
The principle .of the conservation of linear momentum states that,

if no external forces act on a system of colliding objects, the total mo-
mentum of the objects remains constant. .

EXAMPLES

1. An object A of mass 2 kg is moving with a velocity of 3 m s ™! and collides
head on with an object B of mass 1 kg moving in the opposite direction with a
velocity of 4 m s~ 1. Fig. 1.16 (i). After collision both objects coalesce, so that they
move with a common velocity v. Calculate v.

0o

Iz oL
B

0] : (ii)
F1G. 1.16 Examples
Total momentum before collision of A and B in the direction of A
=2x3-1x4= 2kgms™ %

Note that momentum is a vector and the momentum of B is of opposite sign to
A
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After collision, momentum of A and B in the direction of A = 2v+1v = 3v.
3w =2
1

Sv=%ms™.

2. What is understood by (a) the principle of the conservation of energy, (b) the
principle of the conservation of momentum?

A bullet of mass 20 g travelling horizontally at 100 ms™!, embeds itself in
the centre of a block of wood of mass 1 kg which is suspended by light vertical
stringsll m in length. Calculate the maximum inclination of the strings to the
vertical. : '

Describe in detail how the experiment might be carried out and used to
determine the velocity of the bullet just before the impact of the block. (N.)

Second part. Suppose A is the bullet, B is the block suspended from a point O,
and 6 is the maximum inclination to the vertical, Fig. 1.16(ii). If v cm s™! is the
common velocity of block and bullet when the latter is brought to rest relative
to the block, then, from the principle of the conservation of momentum, since
20 g = 002 kg,

(1+0-02)p = 0-02 x 100

2 _100

T R T

The vertical height risen by block and bullet is given by v> = 2gh, where g =
98ms 2and h = I—Icos @ = [(1—cos ).

C. 0?2 = 2gl(1 —cos 6).

2
100 = 2x9-8x 1(1—cos ).
51
1 6= @ZXAI———O'1962
Sol=cosf =7 %08 .

.. cos @ = 0-8038, or § = 37° (approx.).

The velocity, v, of the bullet can be determined by applying the conservation
of momentum principle.

Thus mv = (m+ M)V, where m is the mass of the bullet, M is the mass of the
block, and V is the common velocity. Then v = (m+ M)V /m. The quantities m
and M can be found by weighing. V is calculated from the horizontal displacement
a of the block, since (i) V2 = 2gh and (ii) h(21— h) = a* from the geometry of the
circle, so that; to a good approximation, 2h = a%/l. »

Inelastic and elastic collisions

In collisions, the total momentum of the colliding objects is always
conserved. Usually, however, their total kinetic energy is not conserved.
Some of it is changed to heat or sound energy, which is not recoverable.
Such collisions are said to be inelastic. If the total kinetic energy is
conserved, the collision is said to be elastic. The collision between
two smooth billiard balls is approximately elastic. Many atomic
collisions are elastic. Electrons may make elastic or inelastic collisions
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with atoms of a gas. As proved on p. 28, the kinetic energy of a mass m
moving with a velocity v has kinetic energy equal to zmv>.

As an illustration of the mechanics associated with elastic colhs1ons
consider a sphere A of mass m and velocity v incident on a stationary
sphere B of equal mass m. (Fig. 1.17 (i). Suppose the collision is elastic,
and after collision let A move with a velocity v, at an angle of 60° to
its original direction and B move with a velocity v, at an angle 6 to
the direction of v.

PN .
P mv O\ Q
Conservation of
10) v momentum
S ' (ii)

FiG. 1.17 Conservation of momentum

Since momentum is a vector (p. 17), we may represent the mo-
mentum mp of A by the line PQ drawn in the direction of v. Fig. 1.17 (ii).
Likewise, PR represents the momentum mv, of A after collision.
Since momentum is conserved, the vector RQ must represent the momentum
mv, of B after collision, that is,

mt = md, +mb,.
Hence o T =73, +7,,

or PQ represents v in magnitude, PR represents v, and RQ represents
v,. But if the collision is elastic,
imv? = dmo, 2 +imv,?

vt =0, +0,%

Consequently, triangle PRQ is a right-angled triangle with angle R
equal to 90°.
. vy =vcos60° = %

Also, 6 = 90°—60° = 30°, and v, = v cos 30° = \[3”
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Coefficient of restitution

In practice, colliding objects do not stick together and kinetic energy is always
lost. If a ball X moving with velocity u, collides head-on with a ball Y moving
with a velocity u, in the same direction, then Y will move faster with a velocity

v, say and X may then have a reduced velocity v, in the same direction. The co-
efficient of restitution, ¢, between X and Y is defined as the ratio:

velocity of separation or 227l

velocity of approach Uy —uy
The coefficient of restitution is approximately constant between two given
materials. It varies from e = 0, when objects stick together and the collision is
completely inelastic, to e = 1, when objects are very hard and the collision is
practically elastic. Thus, from above, if u; =4ms ™, u, =1 ms™ ' and e = 08,
then velocity of separation, v,—v, = 08x(4—1) =24ms™ 1.

Momentum and Explosive forces

There are numerous cases where momentum changes are produced
by explosive forces. An example is a bullet of mass m = 50 g say, fired
from a rifle of mass M = 2 kg with a velocity v of 100 m s~ . Initially,
the total momentum of the bullet and rifle is zero. From the principle
of the conservation of linear momentum, when the bullet is fired the
total momentum of bullet and rifle is still zero, since no external force
has acted on them. Thus if V is the velocity of the rifle,

my (bullet) + M V(rifie) = 0

oMV =—my, or V= —%v.
The momentum of the rifle is thus equal and opposite to that of the bullet.
Further, V/v = —m/M. Since m/M = 50/2000 = 1/40, it follows that
V = —v/40 = 25 m s~ !. This means that the rifle moves back or
recoils with a velocity only about Z5th that of the bullet.

If it is preferred, one may also say that the explosive force produces
the same numerical momentum change in the bullet as in the rifle.
Thus mv = MV, where V is the velocity of the rifle in the opposite
direction to that of the bullet. The joule (J) is the unit of energy (p. 24).

The kinetic energy, E,, of the bullet = 3mv? = §.0-05.100% = 250J

The kinetic energy, E,, of the rifle = 1MV? = §.2.2:5% = 625]
Thus the total kinetic energy produced by the explosion = 25625 J.
The kinetic energy E, of the bullet is thus 250/256-25, or about 987, of
the total energy. This is explained by the fact that the kinetic energy
depends on the square of the velocity. The high velocity of the bullet
thus more than compensates for its small mass relative to that of the
rifle. See also p. 26.

Rocket

Consider a rocket moving in outer space where no external forces
act on it. Suppose its mass is M and its velocity is v at a particular
instant. Fig. 1.18 (i)..When a mass m of fuel is ejected, the mass of the
rocket becomes (M —m) and its velocity increases to (v+ Av). Fig. 1.18

(ii).
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relative to rocket

FiG. 1.18. Motion of rocket

Suppose the fuel is always ejected at a constant speed u relative to
Av
2
of the rocket, since the initial velocity of the rocket is v and the final
velocity is v+ Av, an average of v+ Av/2.

the rocket. Then the velocity of themassm = v+ u inthe direction

We now apply the principle of the conservation of momentum to the rocket
and fuel. Initially, before m of fuel was ejected, momentum of rocket and fuel
inside rocket = Muv.

After m is ejected, momentum of rocket = (M —m)(v+Av)

and momentum of fuel = n{v+%—u).

(M—m)(v+Av)+m(v+A—zv—u) = Mv.

Neglecting the product of m . Av, then, after simplification,

M. Av—mu =0,
.m_Av
Vo
Now m = mass of fuel ejected = —AM,
. _AM_ Av
M o

Integrating between limits of M, M, and v, v, respectively

M AM v
J - Tl_ = %J. Av.
My Vo

M vy
o —log— = 0
Og‘Mo u
JoM = Mye @k . . . (D
or v=vo—ulogM/M;) . . . @

When the mass M decreases to M /2

v = vy+ulog,2.
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Motion of centre of mass

If two particles, masses m, and m,, are distances x,, x, respectively
from a given axis, their centre of mass is at a distance x from the axis
given by m,x, + m,x, = (m; +m,)x. See p. 104. Since velocity, v =dx/dt
generally, the velocity v of the centre of mass in the particular direction
is given by mv, +m,v, = (m; +m,)v, where vy, v, are the respective
velocities of m;, m,. The quantity (m,v,+m,v,) represents the total
momentum of the two particles. The quantity (m, +m,)v = Mv, where
M is the total mass of the particles. Thus we can imagine that the total
mass of the particles is concentrated at the centre of mass while they
move, and that the velocity ¢ of the centre of mass is always given by
total momentum = Muv.

If internal forces act on the particles while moving, then, since action
and reaction are equal and opposite, their resultant on the whole body
is zero. Consequently the total momentum is unchanged and hence
the velocity or motion of their centre of mass if unaffected. If an external
force, however, acts on the particles, the total momentum is changed.
The motion of their centre of mass now follows a path which is due to
the external force.

We can apply this to the case of a shell fired from a gun. The centre
of mass of the shell follows at first a parabolic path. This is due to the
external force of gravity, its weight. If the shell explodes in mid-air,
the fragments fly off in different directions. But the numerous internal
forces which occur in the explosion have zero resultant, since action
and reaction are equal and opposite and the forces can all be paired.
Consequently the centre of mass of all the fragments continues to follow
the same parabolic path. As soon as one fragment reaches the ground,
an external force now acts on the system of particles. A different
parabolic path is then followed by the centre of mass

If a bullet is fired in a horizontal direction from a rifle, where is
their centre of mass while the bullet and rifle are both moving?

Work

When an engine pulls a train with a constant force of 50 units
through a distance of 20 units in its own direction, the engine is said
by definition to do an amount of work equal to 50 x 20 or 1000 units,
the product of the force and the distance. Thus if W is the amount of
work,

W = force x distance moved in direction of force.

Work is a scalar quantity; it has no property of direction but only
magnitude. When the force is one newton and the distance moved is
one metre, then the work done is one joule. Thus a force of 50 N moving
through a distance of 10 m does 50 x 10 or 500 joule of work. Note
this is also a measure of the energy transferred to the object.

The force to raise steadily a mass of 1 kg is 1 kilbgram force (1 kgf),
which is about 10 N (see p. 14). Thus if the mass of 1 kg is raised
vertically through 1 m, then, approximately, work done = 10(N) x 1 (m)
= 10 joule.
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The c.gs. unit of work is the erg; it is the work done when a
force of 1 dyne moves through 1 cm. Since 1 N = 10° dynes and
1 m = 100 cm, then 1 N moving through 1 m does an amount of work =
10° (dyne) x 100 (cm) = 107 ergs = 1 joule, by definition of the joule
(p-24). ,

P

P cos® Work =PcosO.s
9 — o
0 p A

FiG. 1.19 Work

Before leaving the topic of ‘work’, the reader should note carefully
that we have assumed the force to move an object in its own direction.
Suppose, however, that a force P pulls an object a distance s along a
line OA acting at an angle @ to it, Fig. 1.19. The component of P along
OA is P cos 8 (p. 8), and this is the effective part of P pulling along the
direction OA. The component of P along a direction perpendicular to
OA has no effect along OA. Consequently

work done = Pcos @ xs.

In general, the work done by a force is equal to the product of the force
and the displacement of its point of application in the direction of the
force.

Power

When an engine does work quickly, it is said to be operating at a
high power; if it does work slowly it is said to be operating at a low
power. ‘Power’ is defined as the work done per second, i.e.,

work done
time taken’

The practical unit of power, the SI unit, is ‘joule per second’ or
watt (W); the watt is defined as the rate of working at.1 joule per second.

1 horse-power (hp) = 746 W = 2 kW (approx),

where 1 kW = 1 kilowatt of 1000 watt. Thus a small motor of ¢ hp
in a vacuum carpet cleaner has a power of about 125 W,

Kinetic Energy

An object is said to possess energy if it can do work. When an object
possesses energy because it is moving, the energy is said to be kinetic,
e.g., a flying stone can disrupt a window. Suppose that an object of
mass m is moving with a velocity u, and is gradually brought to rest in a
distance s by a constant force F acting against it. The kinetic energy
originally possessed by the object is equal to the work done against F,
and hence

power =

kinetic energy = F x s.
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But F = ma, where a is the retardation of the object. Hence F x s =
mas. From v? = u? 4 2as (see p. 6), we have, since v = 0 and a is negative
in this case,

[}

. u
0 = u?—2as, ie, as = 5
.". kinetic energy = mas = smu?.

When m is in kg and u is in ms™!, then imu? is in joule. Thus a
car of mass 1000 kg, moving with a velocity of 36 kmh™! or 10 ms™,

has an amount W of kinetic energy given by
W = Imu? = 1 x 1000 x 10? = 50000 J
Kinetic Energies due to Explosive Forces

Suppose that, due to an explosion or nuclear reaction, a particle of
mass m breaks away from the total mass concerned and moves with
velocity v, and a mass M is left which moves with velocity V in the
opposite direction. Then

kinetic energy, E,, of massm  imuv? my?

kinetic energy, E,, of mass M - IMy? = MV?

M

Now from the principle of the conservation of linear momentum,
mv = MV. Thus v = MV /m. Substituting for v in (1).

.E,_mM*V: M _ 1/m
""E, m*MV?® m /M

Hence the energy is inversely-proportional to the masses of the
particles, that is, the smaller mass, m say, has the larger energy. Thus if
E is the total energy of the two masses, the energy of the smaller
mass = ME/(M +m). An a-particle has a mass of 4 units and a radium
nucleus a mass of 228 units. If disintegration of a thorium nucleus,
mass 232, produces an a-particle and radium nucleus, and a release of
energy of 405 MeV, where 1 MeV = 16 x 107 13J, then

228

energy of a-particle =

The a-particle thus travels a relatively long distance before coming to
rest compared to the radium nucleus.

Potential Energy

A weight held stationary above the ground has energy, because, when
released, it can raise another object attached to it by a rope passing
over a pulley, for example. A coiled spring also has energy, which is
released gradually as the spring uncoils. The energy of the weight or
spring is called potential energy, because it arises.from the position or
arrangement of the body and not from its motion. In the case of the
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weight, the energy given to it is equal to the work done by the person or
machine which raises it steadily to that position against the force-of
attraction of the earth. In the case of the spring, the energy is equal to
the work done in displacing the molecules from their normal equilibrium
positions against the forces of attraction of the surrounding molecules.

If the mass of an object is m, and the object is held stationary at a
height h above the ground, the energy released when the object falls to
the ground is equal to the work done

= force x distance = weight of object x h.

Suppose the weight is 5 kgf and h is 4 metre. Then, since 1 kgf =
9-8 N. = 10 N approx, then

potential energy P.E. = 50 (N) x4 (m) = 2007J
(more accurately, P.E. = 192 J).
Generally, at a height of h,
potential energy = mgh,
where m is in kg, h is in metre, g = 9-8.

EXAMPLE

Define work, kinetic energy; potential energy. Give one example of each of the
following: (a) the conversion into kinetic energy of the work done on a body
and (b) the conversion into potential energy of the work done on a body.

A rectangular block of mass 10 g rests on a rough plane which is inclined to
the horizontal at an angle sin~! (0-05). A force of 0-03 newton, acting in a direc-
tion parallel to a line of greatest slope, is applied to the block so that it moves up
the plane. When the block has travelled a distance of 110 cm from its initial
position, the applied force is removed. The block moves on and comes to rest
again after travelling a further 25 cm. Calculate (i) the work done by the applied
force, (ii) the gain in potential energy of the block and (iii) the value of the coefficient
of sliding friction between the block and the surface of the inclined plane. How
would the coefficient of sliding friction be measured if the angle of the slope
could be altered? (0. and C.)

R

mg
FiG. 1.20 Example

(i) Force = 0-03 newton; distance = 110 cm = 1-1 m.
.. work = 003 x 11 =00331J.
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(i) Gain in P.E. = wt x height moved = 0-01 kgfx 1:35sin § m,
= 001 x 9-8 newton x 1-35 x 0-05 m = 0-0066 J (approx.).
(iii) Work done against frictional force F = work done by force — gain in P.E.
= 0033 —0-0066 = 00264 J.
.. Fx 135 = 0:0264.

00264
F = 135 newton.
Normal reaction, R = mg cos 8 = mg (approx.), since @ is so small
Cou= F_ . 00264 = 0-2 (approx.).

R 135x001x98

Conservative Forces

If a ball of weight W is raised steadily from the ground to a point X
at a height h above the ground, the work done is W.h. The potential
energy, P.E,, of the ball is thus W. h. Now whatever route is taken from
ground level to X, the work done is the same—if a longer path is
chosen, for example, the component of the weight in the particular
direction must then be overcome and so the force required to move
the ball is correspondingly smaller. The P.E. of the| ball at X is thus
independent of the route to X. This implies that if the ball is taken in
a closed path round to X again, the total work done js zero. Work has
been expended on one part of the closed path, and v
regained on the remammg part. l

When the work done in moving round a closed p th
in a field to the original point is zero, the forces in the
field are called conservative forces. The earth’s gravita-
tional field is an example of a field containing consenva-
tive forces, as we now show.

Suppose the ball falls from a place Y at a height b X
to another X at a height of x above the ground. Fig. 1.21. l,,,g X
Then, if W is the weight of the ball and m its mass, B

mg

PE.at X = Wx = mgx FiG. 1.21.
Mechanical

and KE. atX = %mvz = %m . 2g(h—x) = mg(h—x), energy
using v? = 2as = 2g(h — x). Hence 1
P.E.+K.E. = mgx+mg(h—x) = mgh.

Thus at any point such as X, the total mechanical energy of the falling
ball is equal to the original energy. The mechanicaﬁ energy is hence
constant or conserved. This is the case for a conservqtive field.

Non-Conservative forces. Principle of Conservation of iEnergy

The work done in taking a mass m round a closed path in the con-
servative earth’s gravitational field is zero. Fig. 1.22 (i). If the work
done in taking an object round a closed path to its original position is
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No work done
returning to A

\ . Work done
A Earth's ;
field oo™
B
(o)
Cloged
pat

L % /7 IS
Conservative field Non-conservative field

() (i)

Fi1G. 1.22 Non-conservative and conservative fields

not zero, the forces in the field are said to be non-conservative. This is
the case, for example, when a wooden block B is pushed round a closed
path on a rough table to its initial position O. Work is therefore done
against friction, both as A moves away from O and as it returns. In a
conservative field, however, work is done during part of the path and
regained for the remaining part.

When a body falls in the earth’s gravitational field, a small part of
the energy is used up in overcoming the resistance of the air. This
energy is dissipated or lost as heat—it is not regained in moving the
body back to its original position. This resistance is another example
of the action of a non-conservative force.

Although energy may be transformed from one form to another,
as in the last example from mechanical energy to heat, the total energy
in a given system is always constant. If an electric motor is supplied
with 1000 joule of energy, 850 joule of mechanical energy, 140 joule
of heat energy and 10 joule of sound energy may be produced. This
is called the Principle of the Conservation of Energy and is one of the
key principles in science.

Mass and Energy

Newton said that the ‘mass’ of an object was ‘a measure of the
quantity of matter’ in it. In 1905, Einstein showed from his Special
Theory of Relativity that energy is released from an object when its
mass decreases. His mass-energy relation states that if the mass de-
creases by Am kg, the energy released in joule, AW, is given by

AW = Am.c?

where c is the.numerical value of the speed of light in m s, which is
3 x 108. Experiments in Radioactivity on nuclear reactions showed that
Einstein’s relation was true. Thus mass is a form of energy.

Einstein’s relation shows that even if a small change in mass occurs, a -
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relatively large amount of energy is produced. Thu‘p if Am = 1 milli-
gramme = 10~ ° kg, the energy AW released |

=Am.c? =10"°x(3x10%)2 = 9x10!°J.

This energy will keep 250000 100-W lamps burning for about an hour.
In practice, significant mass changes occur only in nuclear reactions.

The internal energy of a body of mass m may be considered as E; , =
mc?, where m is its rest mass. In nuclear reactions where two particles
collide, a change occurs in their total kinetic energy and in their total
mass. The increase in total kinetic energy is accompanied by an equal
decrease in internal energy, Am. c¢*. Thus the total energy, kinetic plus
internal, remains constant.

Before Einstein’s mass-energy relation was known, two independent
laws of science were: ’

(1) The Principle of the Conservation of Mass (the total mass of a
given system of objects is constant even though collisions or other
actions took place between them);

(2) The Principle of the Conservation of Energy (the total energy of a
given system is constant). From Einstein’s relation, however, the two
laws can be combined into one, namely, the Principle of the Conserva-
tion of Energy.

The summary below may assist the reader; it refers to the units of
some of the quantities encountered, and their relations.

Quantity | SI C.G.S. Relations
10° dyne = 1 N

Force newton (N) dyne 1 kgf = 9-8 N (approx, 10 N)

(vector) 1 gf = 00098 N

(approx, 0-01 N)

Mass . v _

(scalar) kilogramme (kg) | gramme (g) 1000g = 1 kg
l\g‘?;;f::;um newtonsecond(Ns)| dyne second | 10°dyns = 1Ns
E(Isl(e:;lggr ) joule (J) erg 107 erg=1J
Power -1 1W=1Js?

(scalar) watt (W) e s 1hp =746 W

- Dimensions

By the dimensions of a physical quantity we mean the way it is
related to the fundamental quantities mass, length and time; these
are usually denoted by M, L, and T respectively. An area, length x
breadth, has dimensions L xL or L?; a volume has dimensions L*;
density, which is mass/volume, has dimensions M/L? or ML ™3 ; relative
density has no dimensions, since it is the ratio of similar quantities, in
this case two masses (p. 114); an angle has no dimensions, since it is the
ratio of two lengths.

As an area has dimensions L2, the unit may be written in terms of the
metre as ‘m?’. Similarly, the dimensions of a volume are L* and hence
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the unit is ‘m¥’. Density has dimensions ML~ 3. The density of mercury
is thus written as ‘13600 kg m™%. If some physical quantity has
dimensions ML~ !T~, its unit may be written as ‘kgm~™!s~ 1",

The following are the dimensions of some quantities in Mechanics:

Velocity. Since velocity = %, its dimensions are L/T or LT ™1

Acceleration. The dimensions are those of velocity/time, i.e., L/T? or
LT 2
Force. Since force = mass x acceleration, its dimensions are MLT ~2,
Work or Energy. Since work = force x distance, its dimensions are
ML2T" 2,
EXAMPLE

In the gas equation (p+%)(V—b) = RT, what are the dimensions of the
constants a and b?

p represents pressure, V represents volume. The quantity a/V? must represent
a pressure since it is added to p. The dimensions of p = [force]/[area] =
MLT™2/L? = ML~ !T"2; the dimensions of V = L3. Hence

[Iiz—;' =ML"'T % or [a] = ML5T"2
The constant b must represent a volume since it is subtracted from V. Hence
[p] = L3

Application of Dimensions. Simple Pendulum

If a small mass is suspended from a long thread so as to form a simple
pendulum, we may reasonably suppose that the period, T, of the oscil-
lations depends only on the mass m, the length [ of the thread, and the
acceleration, g, due to gravity at the place concerned. Suppose then that

T = km*Pg* . . . . @)

where x, y, z, k are unknown numbers. The dimensions of g are LT 2

from above. Now the dimensions of both sides of (i) must be the same.
. T = MFLY(LT 25

Equating the indices of M, L, T on both sides, we have

x =0,

y+z=0,

and —2z=1.
.'.Z= —%,yz%’x=0m

Thus, from (i), the period T is given by
T = kitg™?,

or T=k\/z.
g
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We cannot find the magnitude of k by the method of dimensions, since
it is a number. A complete mathematical investigation shows that
k = 2 in this case, and hence T = 2n./l/g. (See also p. 48).

Velocity of Transverse Wave in a String

As another illustration of the use of dimensions, consider a wave
set up in a stretched string by plucking it. The velocity, V, of the wave
depends on the tension, F, in the string, its length /, and its mass m,
and we can therefore suppose that

V = kF*Pm*, . . . . 1)
where x, y, z are numbers we hope to find by dimensions and k is a
constant.

The dimensions of velocity, V, are LT ™%, the dimensions of tension,
F, are MLT 2, the dimension of length, [, is L, and the dimension of
mass, m, is M. From (i), it follows that

LT ! = (MLT 2 xLYx M=,
Equating powers of M, L, and T on both sides,

C.0=x+7z, . . . . 1)

1=x+y, . . . . (1)

and —1= —-2x, . . . . (i)
x=%z=-%y=3

SV =k. -3
Fl F Tension
orV = k\/ m k\/ m/l k\/ mass per unit length
A complete mathematical investigation shows that k = 1.
The method of dimensions can thus be used to find the relation

between quantities when the mathematics is too difficult. It has been
extensively used in hydrodynamics, for example. See also pp. 176, 181.

EXERCISES 1

(Assume g = 10 ms™2, unless otherwise given)
W hat are the missing words in the statements 1—-10?
1. The dimensions of velocity are . . .
2. The dimensions of force are . ..

3. Using ‘vector’ or ‘scalar’, (i) mass is a . . . (ii) force is a . . . (iii) energy is
a...(ivymomentumisa...

. Linear momentum is defined as . . .
. An ‘elastic’ collision is one in which the . . . and the . . . are conserved.

. When two objects collide, their . . . is constant provided no . .. forces act.

N N A

. One newton x one metre = . ..



DYNAMICS 33

8. 1kilogram force = ... newton, approx.
9. The momentum of two different bodies must be added by a . . . method.

10. Force is the . . . of change of momentum.

Which of the following answers, A, B, C, D or E, do you consider is the correct
one in the statements 11-14?

11. When water from a hosepipe is incident horizontally on a wall, the force
on the wall is calculated from A speed of water, B mass x velocity, C mass per
second x velocity, D energy of water, E momentum change.

12. When a ball of mass 2 kg moving with a velocity of 10 m s™! collides
head-on with a ball of mass 3 kg and both move together after collision, the
common velocity is 4 5 m s™! and energy is lost, B4 m s~ ! and energy is lost,
C2ms™! and energy is gained, D 6 m s~ ! and momentum is gained, E 6 m s !
and energy is conserved.

13. An object of mass 2 kg moving with a velocity of 4 m s~* has a kinetic
energy of A 8 joule, B 16 erg, C 4000 erg, D 16 joule, E 40000 joule.

14. The dimensions of work are A ML?T~2 and it is a scalar, BML2T~2 and
it is a vector, C MLT ~! and it is a scalar, D ML?T and it is a scalar, E MLT and
it is a vector.

15. A car moving with a velocity of 36 km h ™! accelerates uniformly at 1 m s ™2
until it reaches a velocity of 54 km h™!. Calculate (i) the time taken, (i) the
distance travelled during the acceleration, (iii) the velocity reached 100 m from
the place where the acceleration began.

16. A ball of mass 100 g is thrown vertically upwards with an initial speed of
72 km h™*. Calculate (i) the time taken to return to the thrower, (ii) the maximum
height reached, (iii) the kinetic and potential energies of the ball half-way up.

17. The velocity of a ship A relative to a ship B is 10-0 km h™! in a direction
N. 45° E. If the velocity of B is 20-0 km h~! in a direction N. 60° W., find the
actual velocity of A in magnitude and direction.

18. Calculate the energy of (i) a 2 kg object moving with a velocity of 10m s ™1,
(i) a 10 kg object held stationary 5 m above the ground.

19. A 4 kg ball moving with a velocity of 100 m s ! collides with a 16 kg ball
moving with a velocity of 40 ms™! (i) in the same direction, (ii) in the opposite
direction. Calculate the velocity of the balls in each case if they coalesce on
impact, and the loss of energy resulting from the impact. State the principle
used to calculate the velocity.

20. A ship X moves due north at 300 km h™*; a ship Y moves N. 60° W. at
200 km h™*. Find the velocity of Y relative to X in magnitude and direction.
If Y is 10 km due east of X at this instant, find the closest distance of approach
of the two ships.

21. Two buckets of mass 6 kg are each attached to one end of a long inexten-
sible string passing over a fixed pulley. If a 2 kg mass of putty is dropped from a
height of 5 m into one bucket, calculate (i) the initial velocity of the system,
(i) the acceleration of the system, (iii) the loss of energy of the 2 kg mass due to
the impact.
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22. A bullet of mass 25 g and travelling horizontally at a speed of 200 ms™!
imbeds itself in a wooden block of mass 5 kg suspended by cords 3 m long.
How far will the block swing from its position of rest before beginning to return?
Describe a suitable method of suspending the block for this experiment and
explain briefly the principles used in the solution of the problem. (L.)

23. State the principle of the conservation of linear momentum and show
how it follows from Newton’s laws of motion.

A stationary radioactive nucleus of mass 210 units disintegrates into an alpha
particle of mass 4 units and a residual nucleus of mass 206 units. If the kinetic
energy of the alpha particle is E, calculate the kinetic energy of the residual
nucleus. (N.)

24. Define linear momentum and state the principle of conservation of linear
momentum. Explain briefly how you would attempt to verify this principle by
experiment.

Sand is deposited at a uniform rate of 20 kilogramme per second and with
negligible kinetic energy on to an empty conveyor belt moving horizontally
at a constant speed of 10 metre per minute. Find (a) the force required to maintain
constant velocity, (b) the power required to maintain constant velocity, and (c) the

-rate of change of kinetic energy of the moving sand. Why are the latter two
quantities unequal? (0. & C.)

25. What do you understand by the conservation of energy? lllustrate your
answer by reference to the energy changes occurring (a) in a body whilst falling
to and on reaching the ground, (b) in an X-ray tube.

The constant force resisting the motion of a car, of mass 1500 kg, is equal to
one-fifteenth of its weight. If, when travelling at 48 km per hour, the car is brought
to rest in a distance of 50 m by applying the brakes, find the additional retarding
force due to the brakes (assumed constant) and the heat developed in the brakes.
(N) '

26. Define uniform acceleration. State, for each case, one set of conditions
sufficient for a body to describe (a) a parabola, (b} a circle.

A projectile is fired from ground level, with velocity 500 m s~ at 30° to the
horizontal. Find its horizontal range, the greatest vertical height to which it rises,
and the time to reach the greatest height. What is the least speed with which it
could be projected in order to achieve the same horizontal range? (The resistance
of the air to the motion of the projectile may be neglected.) (0.)

27. Define momentum and state the law of conservation of linear momentum.
_ Discuss the conservation of linear momentum in the following cases (a) a
freely falling body strikes the ground without rebounding, (b} during free flight
an explosive charge separates an earth satellite from its propulsion unit, (c) 2
billiard ball bounces off the perfectly elastic cushion of a billiard table.

A bullet of mass 10 g travelling horizontally with a velocity of 300 m s~ * strikes
a block of wood of mass 290 g which rests on a rough horizontal floor. After
impact the block and bullet move together and come to rest when the block has
travelled a distance of 15 m. Calculate the coefficient of sliding friction between
the block and the floor. (0. & C.}

28. Explain the distinction between fundamental and derived units, using two
examples of each.

Derive the dimensions of (a) the moment of a couple and work, and comment
on the results, (b) the constants @ and b in van der Waals’ equation (p+a/v?)(v—b)
= rT for unit mass of a gas. (N.)
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29. Explain what is meant by the relative velocity of one moving object
with respect to another.

A ship A is moving eastward with a speed of 15 km h™! and another ship B, at
a given instant 10 km east of A4, is moving southwards with a speed of 20 km h ™!,
How long after this instant will the ships be nearest to each other, how far apart
will they be then, and in what direction will B be sighted from 47 (C.)

30. Define momentum and state the law of conservation of linear momentum.

Outline an experiment to demonstrate momentum conservation and discuss
the accuracy which could be achieved.

Show that in a collision between two moving bodies in which no external
act, the conservation of linear momentum may be deduced directly from Newton’s
laws of motion.

A small spherical body slides with velocity v and without rolling on a smooth
horizontal table and collides with an identical sphere which is initially at rest on
the table. After the collision the two spheres slide without rolling away from
the point of impact, the velocity of the first sphere being in a direction at 30° to
its previous velocity. Assuming that energy is conserved, and that there are no
horizontal external forces acting, calculate the speed and direction of travel of
the target sphere away from the point of impact. (0. & C)

31. Answer the following questions making particular reference to
the physical principles concerned (a) explained why the load on the
back wheels of a motor car increases when the vehicle is accelerating,
(b) the diagram, Fig. 1.23, shows a painter in a crate which hangs
alongside a building. When the painter who weighs 100 kgf pulls
on the rope the force he exerts on the floor of the crate is 45 kgf.
If the crate weighs 25 kgf find the acceleration. (N.)

32. Derive an expression for the kinetic energy of a moving body. FIG. 1.23

A vehicle of mass 2000 kg travelling at 10 ms™! on a horizontal surface is
brought to rest in a distance of 125 m by the action of its brakes. Calculate the
average retarding force. What horse-power must the engine develop in order
to take the vehicle up an incline of 1 in 10 at a constant speed of 10 ms ™! if the
frictional resistance is equal to 20 kgf? (L.)

33. Explain what is meant by the principle of conservation of energy for a
system of particles not acted upon by any external forces. What modifications
are introduced when external forces are operative?

A bobsleigh is travelling at 10 ms~! when it starts ascending an incline of
1 in 100. If it comes to rest after travelling 150 m up the slope, calculate the
proportion of the energy lost in friction and deduce the coefficient of friction
between the runners and the snow. (0. & C.)

34. State Newton’s Laws of Motion and deduce from them the relation
between the distance travelled and the time for the case of a body acted upon by
a constant force. Explain the units in which the various quantities are measured.

A fire engine pumps water at such a rate that the velocity of the water leaving
the nozzle is 15 m s~ 1. If the jet be directed perpendicularly on to a wall and the
rebound of the water be neglected, calculate the pressure on the wall (1 m?3
water weighs 1000 kg). (0. & C.)



